Robust sensorless FCS-PCC control for inverter-based induction machine systems with high-order disturbance compensation

Abstract

Due to its theoretically fast dynamic response with unlimited bandwidth for direct switch-driven-based induction machines, the finite control set predictive current control (FCS-PCC) method has been verified to be an effective solution in recent years. However, dynamic limitations of the outer speed PI controller exist, especially with high-order time-varying disturbances. In addition, hardware cost can be reduced. Using the universal proportional integral observer (UPIO) method, a robust deadbeat-like encoderless-based FCS-PCC control scheme is investigated for induction machine systems in this paper. The encoder is avoided using the proposed sensorless method. In addition, the system response and disturbance attenuation are enhanced in presence of time-varying unknown load torque and uncertainties. The squared norm is adopted for the cost function design to ensure system stability. Experimental results illustrate that it has good performance such as fast dynamics, good low-speed steady-state accuracy, and robustness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779–787 (2002)

    Google Scholar 

  2. 2.

    Pellegrino, G., Armando, E., Guglielmi, P.: Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region. IEEE Trans. Ind. Appl. 45(5), 1619–1627 (2009)

    Google Scholar 

  3. 3.

    Robyns, B., Berthereau, F., Hautier, J.-P., Buyse, H.: A fuzzy-logic-based multimodel field orientation in an indirect FOC of an induction motor. IEEE Trans. Ind. Electron. 47(2), 380–388 (2000)

    Google Scholar 

  4. 4.

    Buja, G., Kazmierkowski, M.: Direct torque control of PWM inverterfed AC motors-a survey. IEEE Trans. Ind. Electron. 51(4), 744–757 (2004)

    Google Scholar 

  5. 5.

    Zhang Y., Zhu J., Zhao Z., Xu W., Dorrell D.: An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Trans. Power Electron. 27(3), 1502–1513 (2012)

    Google Scholar 

  6. 6.

    Ambrozic, V., Nedeljkovic, D., Nemec, M.: Predictive torque control of induction machines using immediate flux control. IEEE Trans. Ind. Electron. 54(4), 2009–2017 (2007)

    Google Scholar 

  7. 7.

    Preindl, M., Bolognani, S.: Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Trans. Power Electron. 28(2), 1007–1015 (2013)

    Google Scholar 

  8. 8.

    Kennel, R.M., Kazmierkowski, M., Rodriguez, J., Cortes, P.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312–4324 (2008)

    Google Scholar 

  9. 9.

    Karamanakos, P., Geyer, T., Kennel, R.: On the choice of norm in finite control set model predictive control. IEEE Trans. Power Electron. 33(8), 7105–7117 (2017)

    Google Scholar 

  10. 10.

    Geyer, T.: Computationally efficient model predictive direct torque control. IEEE Trans. Power Electron. 26(10), 2804–2816 (2011)

    Google Scholar 

  11. 11.

    Geyer, T.: Model predictive direct torque control: derivation and analysis of the state-feedback control law. IEEE Trans. Ind. Appl. 49(5), 2146–2157 (2013)

    Google Scholar 

  12. 12.

    Norambuena, M., Rodriguez, J., Zhang, Z., Wang, F., Garcia, C., Kennel, R.: A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 34(1), 794–800 (2019)

    Google Scholar 

  13. 13.

    Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495–503 (2007)

    Google Scholar 

  14. 14.

    Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100–3107 (2016)

    Google Scholar 

  15. 15.

    Zhang, Y., Bai, Y., Yang, H.: A universal multiple-vector-based model predictive control of induction motor drives. IEEE Trans. Pow. Electron. 33(8), 6957–6969 (2018)

    Google Scholar 

  16. 16.

    Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: advances and trends. IEEE Trans. Ind. Electron. 64(2), 935–947 (2017)

    Google Scholar 

  17. 17.

    Wang, F., Li, S., Mei, X., Xie, W., Rodriguez, J., Kennel, R.M.: Model based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods. IEEE Trans. Ind. Informat. 11(3), 671–681 (2015)

    Google Scholar 

  18. 18.

    Holtz, J., Quan, J.: Drift and parameter compensated flux estimator for persistent zero stator frequency operation of sensorless controlled induction motors. IEEE Trans. Ind. Appl. 39(4), 1052–1060 (2003)

    Google Scholar 

  19. 19.

    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Google Scholar 

  20. 20.

    Yang, J., Wu, H., Hu, L.: Robust predictive speed regulation of converter-driven DC motors via a discrete-time reduced-order GPIO. IEEE Trans. Ind. Electron. 66(10), 7893–7903 (2018)

    Google Scholar 

  21. 21.

    Yang, J., Wu, H., Hu, L., Li, S.: Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augment-ed disturbance observer. IEEE Trans. Mechatron. 23(2), 769–780 (2018)

    Google Scholar 

  22. 22.

    Nakao, M., Ohnishi, K., Miyachi, K.: Robust decentralized joint control based on interference estimation, in Robotics and Automation. IEEE Int. Conf. 4, 326–331 (1987)

    Google Scholar 

  23. 23.

    Chen, W., Yang, J., Guo, L., Li, S.: Disturbance observer based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Google Scholar 

  24. 24.

    Chen, W., Yang, J., Guo, L., Li, S.: Disturbance observer based control: methods and applications, CRC press, (2014)

  25. 25.

    Sira-Ramirez, H., Oliver-Salazar, M.A.: On the robust control of buck converter dc motor combinations. IEEE Trans. Power Electron. 28(8), 3912–3922 (2013)

    Google Scholar 

  26. 26.

    Holz, J.: Sensorless control of induction machines with or without signal injections. IEEE Trans. Ind. Electron. 53(1), 7–30 (2006)

    Google Scholar 

  27. 27.

    Sun, W., Gao, J., Yu, Y., Wang, G., Xu, D.: Robustness improvement of speed estimation in speed-sensorless induction motor drives. IEEE Trans. Ind. Appl. 52(3), 2525–2536 (2016)

    Google Scholar 

  28. 28.

    Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 30(2), 1557–9948 (2019)

    Google Scholar 

  29. 29.

    Wang, G., Yang, R., Xu, D.: DSP-based control of sensorless IPMSM drives for wide-speed-range operation. IEEE Trans. Ind. Electron. 60(2), 720–727 (2013)

    MathSciNet  Google Scholar 

  30. 30.

    Kim, Y., Sul, S., Park, M.P.: Speed sensorless vector control of induction motor using extended kalman filter. IEEE Trans. Ind. Appl. 30(5), 1225–1233 (1994)

    Google Scholar 

  31. 31.

    Davari, S.A., Khaburi, D.A., Wang, F., Kennel, R.M.: Using full order and reduced order observers for robust sensorless predictive torque control of induction motors. IEEE Trans. Power Electron. 27(7), 3424–3433 (2012)

    Google Scholar 

  32. 32.

    Lascu, C., Boldea, I., Blaabjerg, F.: Direct torque control of sensorless induction motor drives: a sliding-mode approach. IEEE Trans. Ind. Electron. 40(2), 582–590 (2004)

    Google Scholar 

  33. 33.

    Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 67(7), 6089–6100 (2020)

    Google Scholar 

  34. 34.

    Sun, X., Hu, C., Lei, G., Yang, Z., Guo, Y., Zhu, J.: speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans. Veh. Technol. 69(5), 4968–4978 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation (NNSF) of China under Grants (61803335, 51877207), the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY20F030016, and the Talent Project of Zhejiang Association for Science and Technology under Grant No. SKX201901.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junxiao Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, F. Robust sensorless FCS-PCC control for inverter-based induction machine systems with high-order disturbance compensation. J. Power Electron. (2020). https://doi.org/10.1007/s43236-020-00113-8

Download citation

Keywords

  • Induction machine
  • Universal proportional integral observer (UPIO)
  • Finite control set predictive current control (FCS-PCC)
  • Robustness