Evolutionary algorithm based selective harmonic elimination for three-phase cascaded H-bridge multilevel inverters with optimized input sources


Multilevel inverters are finding wide application in electric drives, traction, flexible AC transmission systems (FACTS) and renewable energy systems. A cascaded H-bridge type multilevel inverter (CHBMLI) produces a near sinusoidal output voltage with lower switching stress and a higher conversion efficiency than the other types of MLIs. The Selective Harmonic Elimination (SHE) strategy is used to eliminate lower-order harmonic profiles and to regulate the fundamental component in the output voltage. SHE has the advantages of low switching frequency, low switching losses and low stress. In this paper, the modulation index and input voltage values are also considered as optimization variables along with the conventional switching angles to analyze the performance improvement in selective harmonic elimination. Heterogeneous Comprehensive Learning Particle Swarm Optimization (HCLPSO) and Gravitational Search Algorithm (GSA) algorithms are used to find the optimal switching angles, modulation index and input voltage source values for minimizing the lower-order harmonics present in the output voltage of seven-level and eleven-level CHBMLIs, while maintaining the fundamental component of the output voltage. The results obtained from MATLAB simulations and an experimental setup clearly indicate that the proposed HCLPSO-based multilevel inverter provides better performance when compared with GSA, firefly and Differential Search Algorithm (DSA)-based MLIs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Rodriguez, J., Lai, J.-S., Peng, F.Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  2. 2.

    Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.G., Bin, W., Rodriguez, J., Perez, M.A., Leon, J.I.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553–2580 (2010)

    Article  Google Scholar 

  3. 3.

    Nabae, A., Takahashi, I., Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)

    Article  Google Scholar 

  4. 4.

    Sirisukprasert, S., Lai, J.S., Liu, T.H.: Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters. IEEE Trans. Ind. Electron. 49(4), 875–881 (2002)

    Article  Google Scholar 

  5. 5.

    Tang, T., Han, J., Tan, X.: Selective harmonic elimination for a cascaded multilevel inverter. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 977–981 (2006)

  6. 6.

    Chiasson, J.N., Tolbert, L.M., Mckenzie, K., et al.: Control of a multilevel converter using resultant theory. IEEE Trans. Control Syst. Technol. 11(3), 345–354 (2003)

    MATH  Article  Google Scholar 

  7. 7.

    Filho, F., Maia, H.Z., Mateus, T.H.A., Ozpineci, B., Tolbert, L.M., Pinto, J.O.P.: Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources. IEEE Trans. Ind. Electron. 60(5), 1955–1962 (2013)

    Article  Google Scholar 

  8. 8.

    Salehi, R., Farokhnia, N., Abedi, M., Fathi, S.H.: Elimination of low order harmonics in multilevel inverter using genetic algorithm. J. Power Electron. 11(2), 132–139 (2011)

    Article  Google Scholar 

  9. 9.

    Hiendro, A., Tanjungpura, U.U.: Multiple switching patterns for SHEPWM inverters using differential evolution algorithms. Int. J. Power Electron. Drive Syst. 1(2), 94–103 (2011)

    Google Scholar 

  10. 10.

    Taghizadeh, H., Hagh, M.T.: Harmonic elimination of cascaded multilevel inverters with non equal DC sources using particle swarm optimization. IEEE Trans. Industr. Electron. 57(11), 3678–3684 (2010)

    Article  Google Scholar 

  11. 11.

    Etesami, M.H., Farokhnia, N., Hamid Fathi, S.: Colonial competitive algorithm development toward harmonic minimization in multilevel inverters. IEEE Trans. Ind. Inform. 11(2), 459–466 (2015)

    Google Scholar 

  12. 12.

    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    MATH  Article  Google Scholar 

  13. 13.

    Duman, S., Guvenc, U., Sonmez, Y., Yorukeren, N.: Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 59, 86–95 (2012)

    Article  Google Scholar 

  14. 14.

    Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)

    Article  Google Scholar 

  15. 15.

    Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197–2206 (2010)

    Article  Google Scholar 

  16. 16.

    Nagarajan, R., Saravanan, M.: Performance analysis of a novel reduced switch cascaded multilevel inverter. J. Power Electron. 14(1), 48–60 (2014)

    Article  Google Scholar 

  17. 17.

    Parky, Y.-M., Ryu, H.-S., Lee, H.-W., Jung, M.-G., Lee, S.-H.: Design of a cascaded H-bridge multilevel inverter based on power electronics building blocks and control for high performance. J. Power Electron. 10(3), 262–269 (2010)

    Article  Google Scholar 

  18. 18.

    Kundu, S., Burman, A.D., Giri, S.K., Mukherjee, S., Banerjee, S.: Comparative study between different optimization techniques for finding precise switching angle for SHE-PWM of three phase seven-level cascaded H-bridge inverter. IET Power Electron. 11(3), 600–609 (2018)

    Article  Google Scholar 

  19. 19.

    Gnana Sundari, M., Rajaram, M., Balaraman, S.: Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources. Appl. Soft Comput. 41, 169–179 (2015)

    Article  Google Scholar 

  20. 20.

    Memon, M.A., Mekhilef, S., Mubin, M.: Selective harmonic elimination in multilevel inverter using hybrid APSO algorithm. IET Power Electron. 11(10), 1673–1680 (2018)

    Article  Google Scholar 

  21. 21.

    Blooming, M., Canovale, J.: Application of IEEE STD 519-1992 harmonic limits. In: Proceedings of Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, 2006

Download references

Author information



Corresponding author

Correspondence to S. Sankara Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Iruthayarajan, M.W. & Sivakumar, T. Evolutionary algorithm based selective harmonic elimination for three-phase cascaded H-bridge multilevel inverters with optimized input sources. J. Power Electron. (2020). https://doi.org/10.1007/s43236-020-00112-9

Download citation


  • Cascaded H-bridge multilevel inverters
  • Selective harmonic elimination
  • Evolutionary algorithm
  • Harmonics
  • THD