Three-frequency pseudo-random varying spread spectrum method for filterless digital class-D audio amplifiers


This paper presents a novel spread spectrum (SS) method with a pseudo-natural sampling technique for filterless digital class-D audio amplifiers. This method is proposed to reduce the electromagnetic interference (EMI) emissions of amplifiers by lowering the output out-of-band spectral amplitudes around the pulse width modulator carrier frequency and its multiples. The main idea of this method is that the sampling frequency of the modulating signal and the carrier frequency are varied synchronously and randomly among three different values. Since the carrier frequency is variable, the polynomial interpolation Newton–Raphson (PI-NR) algorithm is modified to correct the harmonic distortion caused by uniform-sampling pulse width modulation (UPWM). Based on a field programmable gate array (FPGA), an experimental system is established to analyze the performances of the proposed method and other six reported SS methods. Experimental results show that the proposed method features the lowest total harmonic distortion (THD) of 0.009% with a 6.6 kHz, 0 dBFS (full scale) input, a relatively high signal-to-noise ratio (SNR) of 52.68 dB and a relatively high output out-of-band peak spectral amplitude reduction of 17.75 dB.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Tatlas, N.A., Floros, A., Hatziantoniou, P., Mourjopoulos, J.N.: Towards the all-digital audio/acoustic chain: challenges and solutions. Proc. the 23rd Audio Engineering Society Conference on Signal Processing in Audio Recording and Reproduction, pp. 219-233 (2003)

  2. 2.

    Ge, T., He, H., Guo, L., Joseph, C.: A direct battery hookup filterless PWM class D amplifier with > 100 dB PSRR for 100 Hz to 1 kHz, 0.005% THD + N and 16 μV noise. IEEE Trans. Power Electron. 35(1), 789–799 (2020)

    Article  Google Scholar 

  3. 3.

    Yu, Z., Zhang, E., Chen, X., Bai, G., Xu, J., Wang, X.: Spectral analysis of UPWM signals for filterless digital class D power amplifiers. Circuits Syst. Signal Process. 39(4), 2094–2117 (2020)

    Google Scholar 

  4. 4.

    Pracný, P., Jørgensen, I.H., Bruun, E.: System-level power optimization of digital audio back end for hearing aids. Circuits Syst. Signal Process. 36(6), 2441–2458 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Yu, Z., Wang, F., Fan, Y.: A power supply error correction method for single-ended digital audio class D amplifiers. Int. J. Electron. 103(12), 2110–2124 (2016)

    Article  Google Scholar 

  6. 6.

    Kulka, Z.: Application of pulse modulation techniques for class-D audio power amplifier. Arch. Acoust. 32(3), 683–706 (2007)

    Google Scholar 

  7. 7.

    Zheng, H., Zhu, Z., Ma, R.: A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application. J. Semicond. 38(7), 60-67 (2017)

  8. 8.

    Chien, S.H., Chen, Y.W., Kuo, T.H.: A 0.96 mA quiescent current, 0.0032% THD + N, 1.45 W class-D audio amplifier with area-efficient PWM-residual-aliasing reduction. Proc. the 2018 IEEE International Solid-State Circuits Conference, pp. 60–62 (2018)

  9. 9.

    Ming, X., Chen, Z., Zhou, Z.K., Zhang, B.: An advanced spread spectrum architecture using pseudorandom modulation to improve EMI in class D amplifier. IEEE Trans. Power Electron. 26(2), 638–646 (2011)

    Article  Google Scholar 

  10. 10.

    Tse, K.K., Chung, H.S.H., Ron Hui, S.Y., So, H.C.: A comparative study of carrier-frequency modulation techniques for conducted EMI suppression in PWM converters. IEEE Trans. Industr. Electron. 49(3), 618–627 (2002)

    Article  Google Scholar 

  11. 11.

    Tsakalis, K., Vlassopoulos, N., Lentaris, G., Reisis, D.: A control-theoretic approach for efficient design of filters in DAC and digital audio amplifiers. Circuits Syst. signal Process. 30(2), 421–438 (2011)

    Article  Google Scholar 

  12. 12.

    Gamoudi, R., Chariag, D.E., Sbita, L.: A review of spread-spectrum-based PWM techniques-a novel fast digital implementation. IEEE Trans. Power Electron. 33(12), 10292–10307 (2018)

    Article  Google Scholar 

  13. 13.

    Yu, Z., Fan, Y., Shi, L., Lv, G.: A pseudo-natural sampling algorithm for low-cost low-distortion asymmetric double-edge PWM modulators. Circuits Syst. Signal Process. 34(3), 831–849 (2015)

    Article  Google Scholar 

  14. 14.

    Pickholtz, R., Schilling, D., Milstein, L.: Theory of spread-spectrum communications-a tutorial. IEEE Trans. Commun. 30(5), 855–884 (1982)

    Article  Google Scholar 

  15. 15.

    Wang, R., Lin, Z., Du, J., Wu, J., He, X.: Direct sequence spread spectrum-based PWM strategy for harmonic reduction and communication. IEEE Trans. Power Electron. 32(6), 4455–4465 (2017)

    Article  Google Scholar 

  16. 16.

    Boudouda, A., Boudjerda, N., Aibeche, A., Bouzida, A.: Dual randomized pulse width modulation technique for buck converter fed by photovoltaic source. Rev. Roum. Sci. Techn.-Électrotechn. et Énerg. 63(3), 289–294 (2018)

    Google Scholar 

  17. 17.

    Lee, K., Shen, G., Yao, W., Lu, Z.: Performance characterization of random pulse width modulation algorithms in industrial and commercial adjustable-speed drives. IEEE Trans. Indust. Appl. 53(2), 1078–1087 (2017)

    Article  Google Scholar 

  18. 18.

    Mathe, L., Lungeanu, F., Sera, D., Rasmussen, P.O., Pedersen, J.K.: Spread spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans. Industr. Electron. 59(10), 3710–3718 (2012)

    Article  Google Scholar 

  19. 19.

    Adrian, V., Keer, C., Gwee, B.H., Chang, J.S.: A randomized modulation scheme for filterless digital class D audio amplifiers. Proc. the 2014 IEEE International Symposium on Circuits and Systems, pp. 774-777 (2014)

  20. 20.

    Karaca, T., Auer, M.: Digital pulse-width modulator with spread-spectrum emission reduction. Elektrotech. Inftech. 135(1), 48–53 (2018)

    Article  Google Scholar 

  21. 21.

    Chen, X., Zhang, C., Yu, Z., Qu, H., Zhang, E.: A spread spectrum modulation method based on dual-clock for filterless digital class-D audio amplifiers. Proc. the 2018 13th IEEE Conference on Industrial Electronics and Applications, pp. 1992-1995 (2018)

  22. 22.

    Goldberg, J.M., Sandler, M.B.: New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. IEEE Proc. Circuits Devices Syst. 141(4), 315–324 (1994)

    Article  Google Scholar 

  23. 23.

    Pascual, C., Roeckner, B.: Computationally efficient conversion from pulse-code modulation to naturally sampled pulse-width modulation. Proc. the 109th Audio Engineering Society Convention, preprint p. 5198 (2000)

  24. 24.

    Johnson, S., Zane, R.: Custom spectral shaping for EMI reduction in high-frequency inverters and ballasts. IEEE Trans. Power Electron. 20(6), 1499–1505 (2005)

    Article  Google Scholar 

  25. 25.

    Davari, P., Hoene, E., Zare, F., Blaabjerg, F.: Improving 9-150 kHz EMI performance of single-phase PFC rectifier. Proc. the 10th International Conference on Integrated Power Electronics Systems, pp. 512-517 (2018)

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 61601411), the Science and Technology Project of Henan Province (Grant Nos. 192102210243, 182102210607 and 192102210108), the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry (Grant No. 2015BSJJ008) and the Foundation for Young Key Teachers of Zhengzhou University of Light Industry.

Author information



Corresponding author

Correspondence to Zeqi Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Bai, G., Zhang, K. et al. Three-frequency pseudo-random varying spread spectrum method for filterless digital class-D audio amplifiers. J. Power Electron. (2020).

Download citation


  • Class-D audio amplifier
  • Spread spectrum (SS)
  • Uniform-sampling pulse width modulation (UPWM)
  • Pseudo-natural sampling
  • Finite state machine (FSM)