Circulating current suppression control for modular multilevel converters based on restricted self-redundant states prediction

Abstract

Circulating current exists among phases or between the DC link and the three phases in a modular multilevel converter (MMC). Suppression control of the alternating components in circulating current is a critical issue for the stable and efficient operation of an MMC. Due to the redundancy and symmetry of MMCs, some of the self-redundant states of MMCs can be used to suppress the alternating components in circulating current without affecting the output performance of the converter. In this paper, a theoretical derivation of the boundary of redundant states is given. Then a suppression strategy for circulating current is proposed based on prediction control and the boundary of redundant states. The selection range of the redundant states is narrowed in this case, which reduces the computation burden when compared to the original method and ensures excellent performance in the suppression of circulating current. Simulations and experiments are carried out to verify the effectiveness of the proposed strategy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Babaei, E., Buccella, C., Saeedifard, M.: Recent advances in multilevel inverters part I. IEEE Trans. Ind. Electron. 63(11), 7145–7147 (2016)

    Google Scholar 

  2. 2.

    Babaei, E., Buccella, C., Saeedifard, M.: Recent advances in multilevel inverters part I. IEEE Trans. Ind. Electron. 63(12), 7777–7779 (2016)

    Google Scholar 

  3. 3.

    Deng F., Heng Q., Liu C., Wang Q., Zhu R., Cai X. and Chen Z.: Power losses control for modular multilevel converters under capacitor deterioration. IEEE J. Emerg. Selecte. Topics Power Electron., (2019) (Early Access)

  4. 4.

    Lesnicar A., Marquardt R.: An innovative modular multilevel converter topology suitable for a wide power range. Proc. IEEE Bologna Power Tech Conference, 1-6 (2003)

  5. 5.

    Deng F., Yu Q., Wang Q., Zhu R., Cai X. and Chen Z.: Suppression of dc-link current ripple for modular multilevel converters under phase-disposition PWM. IEEE Trans. Power Electron., 2019 (Early Access)

  6. 6.

    Hu P., Teodorescu R., and Guerrero J. M.: Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019 (Early Access)

  7. 7.

    Hu, P., Teodorescu, R., Wang, S., Li, S., Guerrero, J.M.: A currentless sorting and selection based capacitor voltage balancing method for modular multilevel converters. IEEE Trans. Power Electron. 34(2), 1022–2015 (2019)

    Google Scholar 

  8. 8.

    Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2015)

    Google Scholar 

  9. 9.

    Farias, J.V.M., Cupertino, A.F., Pereira, H.A., Junior, S.I.S., Teodorescu, R.: On the redundancy strategy of modular multilevel converters. IEEE Trans. Power Del. 33(2), 851–860 (2018)

    Google Scholar 

  10. 10.

    Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L., Nee, H.P.: Dynamic analysis of modular multilevel converters. IEEE Trans. Ind. Electron. 60(7), 2526–2537 (2013)

    Google Scholar 

  11. 11.

    Hu, P., He, Z., Yin, R., Guo, J., Guerrero, JM., Teodorescu, R.: Analysis and optimization of hybrid modular multilevel converters under over-modulation conditions. Int. J. Electr. Power Energy Syst. 116(105578), 1–16 (2020)

    Google Scholar 

  12. 12.

    Deng, F., Chen, Z.: A control method for voltage balancing in modular multilevel converters. IEEE Trans. Power Electron. 29(1), 66–76 (2014)

    MathSciNet  Google Scholar 

  13. 13.

    Angquist, L., Antonios, A., Siemaszko, D., Ilves, K., Vasiladiotis, M., Nee, H.P.: Open-loop control of modular multilevel converters using estimation of stored energy. IEEE Trans. Ind. Appl. 47(6), 2516–2524 (2011)

    Google Scholar 

  14. 14.

    Dekka, A., Wu, B., Yaramasu, V., Zargari, N.R.: Dual-stage model predictive control with improved harmonic performance for modular multilevel converter. IEEE Trans. Ind. Electron. 63(10), 6010–6019 (2016)

    Google Scholar 

  15. 15.

    Bocker, J., The, F.A., Dieckerhoff, S.: Experimental comparison of model predictive control and cascaded control of the modular multilevel converter. IEEE Trans. Power Electron. 30(1), 422–430 (2015)

    Google Scholar 

  16. 16.

    Tu, Q., Xu, Z., Xu, L.: Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Trans. Power Del. 26(3), 2009–2017 (2011)

    MathSciNet  Google Scholar 

  17. 17.

    Li, Z., Wang, P., Chu, Z., Zhu, H., Luo, Y., Li, Y.: An inner current suppressing method for modular multilevel converter. IEEE Trans. Power Electron. 28(11), 4873–4879 (2013)

    Google Scholar 

  18. 18.

    Zhang, M., Huang, L., Yao, W., Lu, Z.: Circulating harmonic current elimination of a cps-pwm-based modular multilevel converter with a plug-in repetitive controller. IEEE Trans. Power Electron. 29(4), 2083–2097 (2014)

    Google Scholar 

  19. 19.

    He, L., Zhang, K., Xiong, J., Fan, S.: A repetitive control scheme for harmonic suppression of circulating current in modular multilevel converters. IEEE Trans. Power Electron. 30(1), 471–481 (2015)

    Google Scholar 

  20. 20.

    Chen, B., Chen, Y., Tian, C., Yuan, J., Yao, X.: Analysis and suppression of circulating harmonic currents in a modular multilevel converter considering the impact of dead time. IEEE Trans. Power Electron. 30(7), 3542–3552 (2015)

    Google Scholar 

  21. 21.

    Hagiwara, M., Akagi, H.: Control and experiment of pulse-width-modulated modular multilevel converters. IEEE Trans. Power Electron. 24(7), 1737–1746 (2009)

    Google Scholar 

  22. 22.

    Pou, J., Ceballos, S., Konstantinou, G., Agelidis, V.G., Picas, R., Zaragoza, J.: Circulating current injection methods based on instantaneous information for the modular multilevel converter. IEEE Trans. Ind. Electron. 62(2), 777–788 (2015)

    Google Scholar 

  23. 23.

    Konstantinou, G., Pou, J., Ceballos, S., Picas, R., Zaragoza, J., Agelidis, V.G.: Control of circulating currents in modular multilevel converters through redundant voltage levels. IEEE Trans. Power Electron. 31(11), 7761–7769 (2016)

    Google Scholar 

  24. 24.

    Ben-Brahim, L., Gastli, A., Trabelsi, M., Ghazi, K.A., Houchati, M., Abu-Rub, H.: Modular multilevel converter circulating current reduction using model predictive control. IEEE Trans. Ind. Electron. 63(6), 3857–3866 (2016)

    Google Scholar 

  25. 25.

    Tu Q., Xu Z., Huang H., Zhang J.: Parameter design principle of the arm inductor in modular multilevel converter based HVDC. Proc. International Conference on Power System Technology, 1–6 (2010)

  26. 26.

    Siemaszko, D.: Fast sorting method for balancing capacitor voltages in modular multilevel converters. IEEE Trans. Power Electron. 30(1), 463–470 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Nature Science Foundation of China under Grant 51577025 and the Science and Technology Program of State Grid Corporation of China, 5100-201999330A-0-0-00.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, J., Deng, F. et al. Circulating current suppression control for modular multilevel converters based on restricted self-redundant states prediction. J. Power Electron. (2020). https://doi.org/10.1007/s43236-020-00104-9

Download citation

Keywords

  • Circulating current suppression
  • Modular multilevel converter
  • Prediction control
  • Restricted self-redundant states