Optimized non-sinusoidal SVPWM method for high power multiphase induction motor drives

Abstract

A space vector pulse width modulation with a non-sinusoidal power supply (NSVPWM) is proposed to improve the stator iron utilization in a multiphase motor. When compared with three phase motors, there are more control freedoms in multiphase motors. The space vector distribution under a non-sinusoidal power supply is analyzed to achieve an optimized selection. Then the harmonic injection proportional coefficient is derived aiming at flux density optimization, which includes the air-gap and the yoke flux distribution. 15 kW and 630 kW nine-phase concentrated winding induction motors are used as practical examples. By maintaining the amplitudes of the air-gap flux density and the yoke flux density as well as the stator copper loss, the electromagnetic torque densities are compared under various load conditions. Experimental results show that when compared with the traditional sinusoidal method, the output torque is improved by 5.45% with the proposed NSVPWM method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Levi, E.: Multiphase electric machines for variable-speed application. IEEE Trans. Ind. Electron. 55(5), 1893–1909 (2008)

    Article  Google Scholar 

  2. 2.

    Levi, E.: Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Trans. Ind. Electron. 63, 433–448 (2016)

    Article  Google Scholar 

  3. 3.

    Levi, E., Bojoi, R., Profumo, F., Toliyat, H.A., Williamson, S.: Multiphase induction motor drives—a technology status review. IET Electr. Power Appl. 1(4), 489–516 (2007)

    Article  Google Scholar 

  4. 4.

    Benatmane, M., McCoy, T.: Development of a 19 MW PWM converter for US Navy surface ships. In: Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, pp. 109–113 (1998)

  5. 5.

    Simond, J.J., Sapin, A., Xuan, T., Wetter, R., Burmeister, P.: 12-pulse LCI synchronous drive for a 20 MW compressor: modelling, simulation and measurements. In: Conf. Rec. IEEE IAS Annu. Meeting, Hong Kong, pp. 2302–2308 (2005)

  6. 6.

    Yepes, A.G., Doval-Gandoy, J., Toliyat, H.: Multifrequency current control for n-phase machines including antiwindup and distortion-free saturation with full dc-bus utilization. IEEE Trans. Power Electron. 34(10), 9891–9905 (2019)

    Article  Google Scholar 

  7. 7.

    Bastos, R.R., de Souza, T.S., de Jesus Cardoso Filho, B.: Modulation effects in an inverter fed nine-phase induction motor drive. IEEE Trans. Ind. Appl. 55(6), 6660–6669 (2019)

    Article  Google Scholar 

  8. 8.

    Barrero, F., Duran, M.J.: Recent advances in the design, modeling and control of multiphase machines—part 1. IEEE Trans. Ind. Electron. 63(1), 449–458 (2016)

    Article  Google Scholar 

  9. 9.

    Duran, M.J., Barrero, F.: Recent advances in the design, modeling and control of multiphase machines—part 2. IEEE Trans. Ind. Electron. 63(1), 459–468 (2016)

    Article  Google Scholar 

  10. 10.

    Zheng, L., Fletcher, J.E., Williams, B.W., He, X.: Dual-plane vector control of a five-phase induction machine for an improved flux pattern. IEEE Trans. Ind. Electron. 55(5), 1996–2005 (2008)

    Article  Google Scholar 

  11. 11.

    Kong, W., Qu, R., Kang, M., Huang, J., Jing, L.: Air-gap and yoke flux density optimization for multiphase induction motor based on novel harmonic current injection method. IEEE Trans. Ind. Appl. 53(3), 2140–2148 (2017)

    Article  Google Scholar 

  12. 12.

    Kong, W., Kang, M., Li, D.W., Qu, R., Jiang, D., Gan, C.: Investigation of spatial harmonic magnetic field coupling effect on torque ripple for multiphase induction motor under open fault condition. IEEE Trans. Power Electron. 33(7), 6060–6071 (2018)

    Article  Google Scholar 

  13. 13.

    Dujic, D., Jones, M., Levi, E.: Analysis of output current ripple rms in multiphase drives using space vector approach. IEEE Trans. Power Electron. 24(8), 1926–1938 (2009)

    Article  Google Scholar 

  14. 14.

    Dujic, D., Grandi, G., Jones, M., Levi, E.: A space vector PWM scheme for multi-frequency output voltage generation with multi-phase voltage source inverters. IEEE Trans. Ind. Electron. 55(5), 1943–1955 (2008)

    Article  Google Scholar 

  15. 15.

    Casadei, D., Duji, D., Levi, E., Serra, G., Tani, A., Zarri, L.: General modulation strategy for seven-phase inverters with independent control of multiple voltage space vectors. IEEE Trans. Ind. Electron. 55(5), 1921–1932 (2008)

    Article  Google Scholar 

  16. 16.

    Jung, H., Hwang, C., Kim, H., Sul, S., Hee-Won, A., Yoo, H.: Minimum torque ripple pulse width modulation with reduced switching frequency for medium-voltage motor drive. IEEE Trans. Ind. Appl. 54(4), 3315–3325 (2018)

    Article  Google Scholar 

  17. 17.

    Singh, B., Kant, P.: A 40-Pulse multiphase staggering modular transformer with power quality improvement in multilevel inverter fed medium-voltage induction motor drives. IEEE Trans. Ind. Appl. 55(4), 7822–7832 (2019)

    Article  Google Scholar 

  18. 18.

    Lu, H., Li, J., Qu, R., Ye, D., Lu, Y.: Fault-tolerant predictive control of six-phase PMSM drives based on pulse-width-modulation. IEEE Trans. Ind. Electron. 66(7), 4992–5003 (2019)

    Article  Google Scholar 

  19. 19.

    Liu, X., Kong, W., Qu, R., Xu, Q.: Non-sinusoidal power supply technology based on space vector PWM for multiphase variable speed drives. In: Proc. IEEE ECCE, Portland, OR, Sept 23–27, pp. 319–324 (2018)

  20. 20.

    Dahono, P.A., Supriatna, E.G.: Output current-ripple analysis of five-phase PWM inverters. IEEE Trans. Ind. Appl. 45(6), 2022–2029 (2009)

    Article  Google Scholar 

  21. 21.

    Umesh, B.S., Sivakumar, K.: Pole-phase modulated multiphase induction motor drive with reduced torque ripple and improved DC link utilization. IEEE Trans. Power Electron. 32(10), 7862–7869 (2017)

    Article  Google Scholar 

  22. 22.

    Zhao, Y., Lipo, T.A.: Modeling and control of a multi-phase induction machine with structural unbalance—part I: machine modeling and multidimensional current regulation. IEEE Trans. Energy Convers. 11(3), 570–577 (1996)

    Article  Google Scholar 

  23. 23.

    Zhao, Y., Lipo, T.A.: Modeling and control of a multi-phase induction machine with structural unbalance—part II: field-oriented control and experimental verification. IEEE Trans. Energy Convers. 11(3), 578–584 (1996)

    Article  Google Scholar 

  24. 24.

    Eldeeb, H.M., Abdel-Khalik, A.S., Hackl, C.M.: Dynamic modelling of dual three-phase IPMSM drives with different neutral configurations. IEEE Trans. Ind. Electron. 66(1), 141–151 (2019)

    Article  Google Scholar 

  25. 25.

    Abdel-Khalik, A.S., Massoud, A.M., Ahmed, S.: Effect of dc-link voltage limitation on postfault steady-state performance of asymmetrical six-phase induction machine. IEEE Trans. Ind. Electron. 65(9), 6890–6900 (2018)

    Article  Google Scholar 

  26. 26.

    Kong, W., et al.: Comparative study of harmonic current suppression control strategies for six-phase dc-biased vernier reluctance machines. IEEE Trans. Ind. Appl. 54(6), 5843–5855 (2018)

    Article  Google Scholar 

  27. 27.

    Lyra, R.O.C., Lipo, T.A.: Torque density improvement in a six phase IM with third harmonic current injection. IEEE Trans. Ind. Appl. 38(5), 1351–1360 (2002)

    Article  Google Scholar 

  28. 28.

    Wang, K., Zhu, Z.Z., Ren, Y., Ombach, G.: Torque improvement of dual three-phase permanent-magnet machine with third-harmonic current injection. IEEE Trans. Ind. Electron. 62(11), 6833–6844 (2015)

    Article  Google Scholar 

  29. 29.

    Jones, M., Vukosavic, S., Dujic, D., Levi, E.: A synchronous current control scheme for multiphase induction motor drives. IEEE Trans. Energy Convers. 24(4), 860–868 (2009)

    Article  Google Scholar 

  30. 30.

    Liu, X., Kong, W., Qu, R., Xu, Q.: Non-sinusoidal power supply technology based on space vector PWM for multiphase variable speed drives. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, pp. 319–324 (2018)

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under project 2018YFB0104501.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wubin Kong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Kong, W. & Zhang, T. Optimized non-sinusoidal SVPWM method for high power multiphase induction motor drives. J. Power Electron. 20, 938–947 (2020). https://doi.org/10.1007/s43236-020-00084-w

Download citation

Keywords

  • NSVPWM
  • Multiphase motor
  • Harmonic voltage injection
  • Torque density
  • Flux density