Characterizing spatial variability of some soil properties in Beni-Moussa irrigated perimeter from Tadla plain (Morocco) using geostatistics and kriging techniques

Abstract

The research was carried out in Beni-Mousssa perimeter in the southern part of the Tadla plain, in Morocco. This study was performed using physicochemical analyses combined with statistical and geostatistical analysis to understand the spatial variability of soil quality in this agricultural area and to elaborate sustainable management of soil and environmental decision. The locations of sampling sites were defined by knowledge of the region’s farmers, on-site observations, and analyzed in the laboratory using the standard procedures for each soil property. A total of 67 soil samples were collected and analyzed in Geo-Resources and Environment Laboratories at the Faculty of Sciences and Techniques of Beni-Mellal, to identify physical and chemical soil properties especially pH, electrical conductivity (EC), organic carbon (OC), carbonate content (CaCO3), texture, exchangeable potassium (K), total phosphorus (P), total nitrogen (N), and cation exchange capacity (CEC). The soil presented an alkaline reaction. Other soil characteristics varied considerably in the overall study area. Pearson correlation among pH, soil OC, and CaCO3 were considered to be positive and significant (p < 0.05). Gaussian, exponential, spherical, and K-Bessel semivariogram models were selected, with weak to strong spatial dependency to be the better adjustment by using ordinary kriging techniques to estimate the spatial variability of soil characteristics. The obtained results revealed that the variation of soil characteristics in the study area depended on intrinsic and management soil factors. The detailed maps obtained in the framework of this type of study are very useful at international level in the selection of appropriate interventions, in particular with regard to the quantity of fertilizers, crop rotation, conservation and rehabilitation of deteriorated soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ayoubi, S. H., Zamani, S. M., & Khormali, F. (2007). Spatial variability of some soil properties for site specific farming in northern Iran. Internat J Plant Prod. https://doi.org/10.22069/IJPP.2012.539.

    Article  Google Scholar 

  2. Balmer, M. G. (1967). Principles of Statistics (2nd ed.). Edinburgh and London: Oliver and Boyd.

    Google Scholar 

  3. Barakat, A. (2020). Groundwater NO3 concentration and its potential health effects in Beni Moussa perimeter (Tadla plain concentration and its potential health effects in Beni Moussa perimeter (Tadla plain. Morocco): Geoenvironmental Disasters. https://doi.org/10.1186/s40677-020-00149-9.

    Google Scholar 

  4. Barakat, A., Ennaji, W., El Jazouli, A., Amediaz, R., & Touhami, F. (2017). A Multivariate analysis and GIS-based soil suitability diagnosis for sustainable intensive agriculture in Beni-Moussa irrigated subperimeter. Morocco: Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-017-0272-5.

    Google Scholar 

  5. Barakat, A., Ennaji, W., Krimissa, S., & Bouzaid, M. (2019). Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2019.1595540.

    Article  Google Scholar 

  6. Behera, S. K., & Shukla, A. K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of INDIA. Land Degradation and Development. https://doi.org/10.1002/ldr.2306.

    Article  Google Scholar 

  7. Behera, S. K., Singh, M. V., Singh, K. N., & Todwal, S. (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma. https://doi.org/10.1016/j.geoderma.2011.01.016.

    Article  Google Scholar 

  8. Behera, S. K., Suresh, K., Rao, B. N., Mathur, R. K., Shukla, A. K., Manorama, K., et al. (2016). Spatial variability of some soil properties varies in oil palm (Elaeis guineensis Jacq) plantations of west coastal area of India. Solid Earth, 19, 10–24. https://doi.org/10.5194/se-7-979-2016.

    Article  Google Scholar 

  9. Bhattacharyya, T., Pal, D. K., Mandal, C., Chandran, P., Ray, S. K., Sarkar, D., et al. (2013). Soils of India: historical perspective, classification and recent advances. Current Science, 104, 1308–1323.

    Google Scholar 

  10. Bouchaou, L., Michelot, J. L., Qurtobi, M., Zine, N., Gaye, C. B., Aggarwal, P. K., & Vengosh, A. (2009). Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2009.10.019.

    Article  Google Scholar 

  11. Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., & Jordán, A. (2016). Soil mapping, classification, and pedologic modeling: history and future directions. Geoderma. https://doi.org/10.1016/j.geoderma.2015.05.017.

    Article  Google Scholar 

  12. Burgess, T. M., & Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil properties: the variogram and punctual kriging. Journal of Soil Science. https://doi.org/10.1111/j.1365-2389.1980.tb02100.x.

    Article  Google Scholar 

  13. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

    Article  Google Scholar 

  14. Cemek, B., Gueler, M., Kilic, K., Demir, Y., & Arslan, H. (2007). Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-006-9220-y.

    Article  Google Scholar 

  15. Cerda, A., Morera, A. G., & Bodi, M. S. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.1889.

    Article  Google Scholar 

  16. Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2004.10.005.

    Article  Google Scholar 

  17. Cressie, N. A. C. (1993). Statistics for spatial data (Revised). John Wiley: New York.

    Google Scholar 

  18. Dabin, B. (1970). Les facteurs chimiques de la fertilité des sols. Phosphore: Matière Organique.

    Google Scholar 

  19. De Lima, T. M., Weindorf, D. C., Curi, N., Guilherme, L. R., Lana, R. M., & Ribeiro, B. T. (2019). Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: inferences for soil fertility assessment. Geoderma. https://doi.org/10.1016/j.geoderma.2019.06.045.

    Article  Google Scholar 

  20. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: geostatistical software library and user’s guide (1st ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  21. Doolittle, J. A., Sudduth, K. A., Kitchen, N. R., & Indorante, S. J. (1994). Estimating depth to claypans using electromagnetic induction methods. Journal of Soil and Water Conservation, 49, 572–575.

    Google Scholar 

  22. El Hamzaoui, E. H., El Baghdadi, M., Oumenskou, H., Aadraoui, M., & Hilali, A. (2020). Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa. Tadla plain (Morocco): Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00756-3.

    Google Scholar 

  23. Ersahin, S. (2003). Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science. https://doi.org/10.2136/sssaj2003.184.

    Article  Google Scholar 

  24. Foroughifar, A., Jafarzadeh, A., Torabi, H., Pakpour, A., & Miransari, M. (2013). Using geostatistics and geographic information system techniques to characterize spatial variability of soil properties, including micronutrients. Communcations in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2012.758279.

    Article  Google Scholar 

  25. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M. B., Arcenegui, V., et al. (2009). Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research. https://doi.org/10.1016/j.still.2009.06.002.

    Article  Google Scholar 

  26. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford Univ Press.

    Google Scholar 

  27. Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physio-chemical soil properties. Biology and Fertility of Soils. https://doi.org/10.1007/s003740050439.

    Article  Google Scholar 

  28. Goovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. CATENA. https://doi.org/10.1016/S0341-8162(98)00116-7.

    Article  Google Scholar 

  29. Hammond, C. (1992). Level I stability analysis (LISA) documentation for version 2.0. Newyork: US Department of Agriculture Forest Service, Intermountain Research Station.

    Google Scholar 

  30. Hamzeh, S., Naseri, A. A., AlaviPanah, S. K., Mojaradi, B., Bartholomeus, H. M., Clevers, J. G. P. W., & Behzad, M. (2013). Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2012.07.002.

    Article  Google Scholar 

  31. Hasany-Pak, A. A. (1998). Geostatistics. Tehran: Tehran University Press.

    Google Scholar 

  32. Heinze, S., & Raupp, J. (2010). Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant and Soil. https://doi.org/10.1007/s11104-009-0102-2.

    Article  Google Scholar 

  33. Hilali, A., El Baghdadi, M., Barakat, A., & Ennaji, W. (2020). Contribution of GIS techniques and pollution indices in the assessment of metal pollution in agricultural soils irrigated with wastewater: case of the Day River. Beni Mellal (Morocco): Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-020-00186-8.

    Google Scholar 

  34. Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., & Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society America Journal. https://doi.org/10.2136/sssaj2004.0154.

    Article  Google Scholar 

  35. Isaacks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford Univ Press.

    Google Scholar 

  36. Jenny, H. (1941). Factors of soil formation. New York: McGraw–Hill.

    Google Scholar 

  37. Johnson, C. K., Doran, J. W., Duke, H. R., Wienhold, B. J., Eskridge, K. M., & Shanahan, J. F. (2001). Field-scale electrical conductivity mapping for delineating soil condition. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2001.1829.

    Article  Google Scholar 

  38. Johnson, C. K., Eskridge, K. M., Wienhold, B. J., Doran, J. W., Peterson, G. A., & Buchleiter, G. W. (2003). Using electrical conductivity classification and within-field variability to design field-scale research. Agronomy Journal. https://doi.org/10.2134/agronj2003.6020.

    Article  Google Scholar 

  39. Jung, W. K., Kitchen, N. R., Sudduth, K. A., Kremer, R. J., & Motavalli, P. P. (2005). Relationship of apparent soil electrical conductivity to claypan soil properties. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2004.0202.

    Article  Google Scholar 

  40. Lopez-Granados, F., Jurado-Exposito, M., Atenciano, S., Garcia-Ferrer, A., De la Orden, M. S., & Garcia-Torres, L. (2020). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil. https://doi.org/10.1023/A:1021568415380.

    Article  Google Scholar 

  41. Mehrjardi, M. Z., Mehrjardi, R. T., & Akbarzadeh, A. (2010). Evaluation of geostatistical techniques for mapping spatial distribution of soil PH, salinity and plant cover affected by environmental factors in Southern Iran. Notulae Scientia Biologicae, 10, 10.

    Google Scholar 

  42. Mueller, T. G., Hartsock, N. J., Stombaugh, T. S., Shearer, S. A., Cornelius, P. L., & Barnhise, R. I. (2003). Soil electrical conductivity map variability in limestone soil overlain by loess. Agronomy Journal. https://doi.org/10.2134/agronj2003.4960.

    Article  Google Scholar 

  43. Mukherjee, A., Zimmerman, A. R., Hamdan, R., & Cooper, W. T. (2014). Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth. https://doi.org/10.5194/se-5-693-2014.

    Article  Google Scholar 

  44. Novara, A., Rühl, J., La Mantia, T., Gristina, L., La Bella, S., & Tuttolomondo, T. (2015). Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth, 6(2), 425–432.

    Article  Google Scholar 

  45. Ochoa-Cueva, P., Fries, A., Montesinos, P., Rodríguez-Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degradation and Development. https://doi.org/10.1002/ldr.2219.

    Article  Google Scholar 

  46. Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: computing and modelling variograms and kriging. CATENA. https://doi.org/10.1016/j.catena.2013.09.006.

    Article  Google Scholar 

  47. Ore, G., & Bruins, H. J. (2012). Design features of ancient agriculture terrace walls in the Negev Desert: human-made geodiversity. Land Degradation and Development. https://doi.org/10.1002/ldr.2152.

    Article  Google Scholar 

  48. Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L. A., & Aadraoui, M. (2018). Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter. Tadla plain, Morocco: Geology Ecology and Landscapes. https://doi.org/10.1080/24749508.2018.1504272.

    Google Scholar 

  49. Özgöz, E. (2009). Long term conventional tillage effect on spatial variability of some soil physical properties. Journal of Sustainable Agriculture. https://doi.org/10.1080/10440040802395056.

    Article  Google Scholar 

  50. Pal, D. K., Wani, S. P., Sahrawat, K. L., & Srivastava, P. (2014). Red ferruginous soils of tropical Indian environments: a review of the pedogenic processes and its implications for edaphology. CATENA. https://doi.org/10.1016/j.catena.2014.05.023.

    Article  Google Scholar 

  51. Pang, S., Li, T. X., Zhang, X. F., Wang, Y. D., & Yu, H. Y. (2011). Spatial variability of cropland lead and its influencing factors: a case study in Shuangliu county. Sichuan province, China: Geoderma. https://doi.org/10.1016/j.geoderma.2011.01.002.

    Google Scholar 

  52. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., & Burguet, M. (2013). Spatial models for monitoring the spatio-temporal evolution of ashes after fire – a case study of a burnt grassland in Lithuania. Solid Earth. https://doi.org/10.5194/se-4-153-2013.

    Article  Google Scholar 

  53. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., & Zavala, L. M. (2015). Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development. https://doi.org/10.1002/ldr.2195.

    Article  Google Scholar 

  54. Pohlmann, H. (1993). Geostatistical modelling of environmental data. CATENA, 20, 191–198.

    Article  Google Scholar 

  55. Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. WI: American Society of Agronomy Madison.

    Google Scholar 

  56. Rhoades, J.D., Corwin, D. L., & Lesch, S.M. (1999). Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. Assessment of non-point source pollution in the vadose zone. American Geophysical Union. https://www.researchgate.net/profile/Dennis_Corwin/publication/274063528_Geospatial_Measurements_of_Soil_Electrical_Conductivity_to_Determine_Soil_Salinity_and_Diffuse_Salt_Loading_from_Irrigation/links/5514988e0cf2eda0df3380cf.pdf. (Accessed 09 September 2020).

  57. Saito, H., McKenna, A., Zimmerman, D. A., & Coburn, T. C. (2005). Geostatistical interpolation of object counts collected from multiple strip transects: ordinary kriging versus finite domain kriging. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-004-0207-3.

    Article  Google Scholar 

  58. Saldana, A., Stein, A., & Zinck, J. A. (1998). Spatial variability of soil properties at different scales within three terraces of the Henare River (Spain). CATENA. https://doi.org/10.1016/S0341-8162(98)00090-3.

    Article  Google Scholar 

  59. Samper-Calvete, F. J., & Carrera-Ramírez, J. (1996). Geostadística aplicaciones a la hidrología subterránea centro internacional de métodos numéricos en ingeniería (p. 484). España: Universitat Politècnica de Catalunya.

    Google Scholar 

  60. Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2005.0117.

    Article  Google Scholar 

  61. Schimel, D., Melillo, J., Tian, H., McGuire, D., Kicklighter, D., Kittel, T., et al. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science. https://doi.org/10.1126/science.287.5460.2004.

    Article  Google Scholar 

  62. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika. https://doi.org/10.2307/2333709.

    Article  Google Scholar 

  63. Shi, W., Liu, J., Du, Z., Song, Y., Chen, C., & Yue, T. (2009). Surface modelling of soil pH. Geoderma. https://doi.org/10.1016/j.geoderma.2009.01.020.

    Article  Google Scholar 

  64. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanism of soil organic matter: implications for C-saturation of soils. Plant and Soil. https://doi.org/10.1023/A:1016125726789.

    Article  Google Scholar 

  65. Sokoti, S., Mahdian, M., Mahmoodi, S., & Ghahramani, A. (2006). Comparing the applicability of some geostatistics methods to predict soil salinity, a case study of Urmia plain. Pajuhesh and Sazandegi, 74, 90–98.

    Google Scholar 

  66. Stanchi, S., Falsone, G., & Bonifacio, E. (2015). Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy). Solid Earth. https://doi.org/10.5194/se-6-403-2015.

    Article  Google Scholar 

  67. Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the determination of the available nitrogen in the soil. Current Science, 25, 259–260.

    Google Scholar 

  68. Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G., & Wiebold, W. J. (2003). Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal. https://doi.org/10.2134/agronj2003.4720.

    Article  Google Scholar 

  69. Tesfahunegn, G. B., Tamene, L., & Vlek Paul, L. G. (2011). Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research. https://doi.org/10.1016/j.still.2011.09.005.

    Article  Google Scholar 

  70. Thapa, G. B., & Yila, O. M. (2012). Farmers’ land management practices and status of agricultural land in the Jos Plateau. Nigeria: Land Degradation and Development. https://doi.org/10.1002/ldr.1079.

    Google Scholar 

  71. Tian, K., Huang, B., Xing, Z., & Hu, W. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2016.08.037.

    Article  Google Scholar 

  72. Tripathi, R., Nayak, A. K., Shahid, M., Raja, R., Panda, B. B., Mohanty, S., et al. (2015). Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-015-2003-4.

    Article  Google Scholar 

  73. Utset, A., Lopez, T., & Diaz, M. (2000). A comparison of soil maps, kriging and a combined method for spatially prediction bulk density and field capacity of Ferralsols in the Havana-Matanaz Plain. Geoderma, 96, 199–213.

    Article  Google Scholar 

  74. Wakene, N. (2001). Assessment of important physio-chemical properties of dystric udalf (dystric Nitosols) under different management system in Bako area Western Ethiopia. School of Graduate Studies: Alemaya University, Ethiopia.

    Google Scholar 

  75. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 34, 29–38.

    Article  Google Scholar 

  76. Wang, Z. M., Song, K. S., Zhang, B., Liu, D. W., Li, X. Y., Ren, C. Y., et al. (2009). Spatial variability and affecting factors of soil nutrients in croplands of Northeast China: a case study in Dehui county. Plant Soil and Environment, 55, 110–120.

    Article  Google Scholar 

  77. Wang, C., Li, W., Yang, Z., Chen, Y., Shao, W., & Ji, J. (2015). An invisible soil acidification: critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports. https://doi.org/10.1038/srep12735.

    Article  Google Scholar 

  78. Wang, B., Wang, Y., & Wang, L. (2016). The effects of erosional topography on soil properties in a Pinus massoniana forest in southern China. Journal of Soil and Water Conservation. https://doi.org/10.2489/jswc.72.1.36.

    Article  Google Scholar 

  79. Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. London: Oxford University Press (OUP).

    Google Scholar 

  80. Zar, J. H. (1974). Circular distributions. Biostatistical Analysis, 22, 310–325.

    Google Scholar 

  81. Zhang, H., Zhuang, S., Qian, H., Wang, F., & Ji, H. (2015). Spatial variability of the topsoil organic carbon in the Moso bamboo forests of southern China in association with soil properties. PLoS ONE. https://doi.org/10.1371/journal.pone.0119175.

    Article  Google Scholar 

  82. Zolekar, R. B., & Bhagat, V. S. (2015). Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Computers and Electronics in Agriculture, 9, 180–234. https://doi.org/10.1016/j.compag.2015.09.01.

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no funding sources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to El Hassania El Hamzaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 363 KB)

Supplementary file2 (DOCX 83 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Hamzaoui, E., El Baghdadi, M. Characterizing spatial variability of some soil properties in Beni-Moussa irrigated perimeter from Tadla plain (Morocco) using geostatistics and kriging techniques. J. Sediment. Environ. (2021). https://doi.org/10.1007/s43217-021-00050-x

Download citation

Keywords

  • Soil property
  • Geostatistics
  • Spatial variability
  • Tadla plain
  • Cross-validation
  • Semivariogram models