Chemical weathering, provenance, and tectonic setting inferred from recently deposited sediments of Dharla River, Bangladesh

Abstract

The petrographic and geochemical composition of the Dharla River sediments has been examined to infer their sediment type, degree of weathering, provenance, and tectonic settings. Petrographically the sediments are characterized by the high quartz content (64.97 to 74.24 wt%), followed by feldspar (7.04 to 15.20 wt%), mica (5.38 to 19.92 wt%), lithic fragment (3.46 to 8.14 wt%), and heavy minerals (1.98 to 6.94 wt%). Geochemical composition shows marked enrichment of SiO2 (mean ~ 74.16%) and a strong negative correlation with the other major oxides because of quartz dilution. The Chemical index of alteration (CIA, 45.52 to 63.51); Plagioclase index of alteration (PIA, 43.13 to 66.55); W index (20.15 to 32.86) and Rb/Sr ratios (0.35 to 0.98) suggest low to moderate intensity of chemical weathering in the source area. Geochemical classifications of the studied samples show mostly litharenitic immature type of sediments also reflects high index of compositional variability (ICV, 0.96 to 1.72). The ternary diagrams of Al2O3–(CaO + Na2O)–K2O (or A–CN–K) and of mafic rocks, felsic rocks and degree of weathering of the source rocks (or MFW) and several immobile trace element ratios (e.g. light rare earth element/Light rare earth element or LREE /HREE, Eu/Eu*, LaN/LuN, La/Sc, La/Co, Th/Sc, and Th/Co) reflect the contribution of common felsic source rock, with the composition close to average rhyolite, granodiorite, and granite. Chondrite‐normalized rare earth element (REE) pattern shows high LREE enrichments and almost flat HREE pattern with a sharp negative Eu anomaly suggesting a felsic source provenance and characteristically supports the Himalayan source rocks compositions seemingly observed in both active and passive continental margins. The geochemical nature of weathering patterns manifests the Dharla somewhat of mass distributor en route the Brahmaputra to the global ocean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

taken from Condie (1993), average UCC from Taylor and McLennan (1985), Siwalik data taken from Ranjan and Banerjee (2009) and the Brahmaputra River sediment compositions from Ramesh et al. (2000)

Fig. 11
Fig. 12

References

  1. Akarish, A., & El-Gohary, A. (2011). Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, East Sinai Egypt. Journal of Applied Sciences, 11(17), 3070–3088. https://doi.org/10.3923/jas.2011.3070.3088.

    Article  Google Scholar 

  2. Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45(4), 873–882. https://doi.org/10.1306/212F6E6F-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  3. Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., et al. (2015). Rare earth elements and neodymium isotopes in world river sediments revisited. Geochimica et Cosmochimica Acta, 170, 17–38. https://doi.org/10.1016/j.gca.2015.08.001.

    Article  Google Scholar 

  4. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611–627. https://doi.org/10.1086/628815.

    Article  Google Scholar 

  5. Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/BF00375292.

    Article  Google Scholar 

  6. Bhuiyan, M. A. H., Rahman, M. J. J., Dampare, S. B., & Suzuki, S. (2011). Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra-Jamuna River, Bangladesh: Inference from geochemistry. Journal of Geochemical Exploration, 111(3), 113–137. https://doi.org/10.1016/j.gexplo.2011.06.008.

    Article  Google Scholar 

  7. Bikramaditya Singh, R. K. (2010). Geochemistry and petrogenesis of granitoids of Lesser Himalayan crystallines, Western Arunachal Himalaya. Journal of the Geological Society of India, 75(4), 618–631. https://doi.org/10.1007/s12594-010-0055-3.

    Article  Google Scholar 

  8. Blatt, H. (1985). Provenance studies and Mudrocks. SEPM Journal of Sedimentary Research. https://doi.org/10.1306/212F8611-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  9. Bose, I., & Navera, U. K. (2017). Flood maps and bank shifting of Dharla River in Bangladesh. Journal of Geoscience and Environment Protection, 5(09), 109. https://doi.org/10.4236/gep.2017.59008.

    Article  Google Scholar 

  10. Bracciali, L., Marroni, M., Pandolfi, L., & Rocchi, S. (2007). Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. Geological Society of America Special Papers, 420, 73. https://doi.org/10.1130/2006.2420(06).

    Article  Google Scholar 

  11. Camuti, K. S., & McGuire, P. T. (1999). Preparation of polished thin sections from poorly consolidated regolith and sediment materials. Sedimentary Geology, 128(1–2), 171–178. https://doi.org/10.1016/S0037-0738(99)00073-1.

    Article  Google Scholar 

  12. Caracciolo, L., Von Eynatten, H., Tolosana-Delgado, R., Critelli, S., Manetti, P., & Marchev, P. (2012). Petrological, geochemical, and statistical analysis of eocene-oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. Journal of Sedimentary Research, 82(7), 482–498. https://doi.org/10.2110/jsr.2012.31.

    Article  Google Scholar 

  13. Carosi, R., Montomoli, C., & Iaccarino, S. (2018). 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas. Earth-Science Reviews, 177, 124–138. https://doi.org/10.1016/j.earscirev.2017.11.006.

    Article  Google Scholar 

  14. Chakraborty, S., & Datta, K. (2013). Causes and consequences of channel changes–a spatio-temporal analysis using remote sensing and GIS—Jaldhaka-Diana River System (Lower Course), Jalpaiguri (Duars), West Bengal, India. Journal of Geography and Natural Disasters, 3(1), 1–13. https://doi.org/10.4172/2167-0587.1000107.

    Article  Google Scholar 

  15. Chakraborty, S., & Mukhopadhyay, S. (2014). A comparative study on the nature of channel confluence dynamics in the lower Jaldhaka River system, West Bengal, India. International Journal of Geology, Earth and Environmental Sciences, 4(2), 87–97.

    Google Scholar 

  16. Chaudhuri, S., & Brookins, D. G. (1979). The RbSr systematics in acid-leached clay minerals. Chemical Geology, 24(3–4), 231–242. https://doi.org/10.1016/0009-2541(79)90125-6.

    Article  Google Scholar 

  17. Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587.

    Article  Google Scholar 

  18. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.

    Article  Google Scholar 

  19. Condie, K. C., Noll, P. D., & Conway, C. M. (1992). Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 77(1–2), 51–76. https://doi.org/10.1016/0037-0738(92)90103-X.

    Article  Google Scholar 

  20. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9.

    Article  Google Scholar 

  21. Crook, K. A. W. (1974). Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes). SEPM Society for Sedimentary Geology Special Publication, 19, 304–310.

    Google Scholar 

  22. Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22), 4955–4972. https://doi.org/10.1016/0016-7037(94)90224-0.

    Article  Google Scholar 

  23. Das, B. K., & Haake, B. G. (2003). Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance, and tectonic setting. Geosciences Journal, 7(4), 299–312. https://doi.org/10.1007/BF02919560.

    Article  Google Scholar 

  24. Dasgupta, S., Ganguly, J., & Neogi, S. (2004). Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P-T gradient, and implications. Journal of Metamorphic Geology, 22(5), 395–412. https://doi.org/10.1111/j.1525-1314.2004.00522.x.

    Article  Google Scholar 

  25. Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., & Egli, M. (2020). Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology, 363, 107235. https://doi.org/10.1016/j.geomorph.2020.107235.

    Article  Google Scholar 

  26. Dickinson, W. R. (1985). Interpreting Provenance Relations from Detrital Modes of Sandstones. In Provenance of Arenites (pp. 333–361). Dordrecht: Springer Netherlands. https://doi.org/https://doi.org/10.1007/978-94-017-2809-6_15

  27. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222. https://doi.org/10.1130/0016-7606(1983)94%3c222:PONAPS%3e2.0.CO;2.

    Article  Google Scholar 

  28. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG Bulletin, 63, 2164–2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D.

    Article  Google Scholar 

  29. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2.

    Article  Google Scholar 

  30. Folk, R. L. (1974). Petrology of sedimentary rocks. Austin: Hemphill Publishing Company.

    Google Scholar 

  31. Galy, A., & France-Lanord, C. (2001). Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, 29(1), 23. https://doi.org/10.1130/0091-7613(2001)029%3c0023:HERITH%3e2.0.CO;2.

    Article  Google Scholar 

  32. Ghosh, S., Sarkar, S., & Ghosh, P. (2012). Petrography and major element geochemistry of the Permo-Triassic sandstones, central India: Implications for provenance in an intracratonic pull-apart basin. Journal of Asian Earth Sciences, 43(1), 207–240. https://doi.org/10.1016/j.jseaes.2011.09.011.

    Article  Google Scholar 

  33. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ∼19 Ga sedimentary rocks from northeastern Labrador Canada. Geochimica et Cosmochimica Acta, 61(19), 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7.

    Article  Google Scholar 

  34. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. SEPM Journal of Sedimentary Research. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  35. Holeman, J. N. (1968). The Sediment yield of major Rivers of the World. Water Resources Research, 4(4), 737–747. https://doi.org/10.1029/WR004i004p00737.

    Article  Google Scholar 

  36. Hossain, H. M. Z. (2020). Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geological Journal, 55(5), 3321–3343. https://doi.org/10.1002/gj.3595.

    Article  Google Scholar 

  37. Hossain, I., Roy, K. K., Biswas, P. K., Alam, M., Moniruzzaman, M., & Deeba, F. (2014). Geochemical characteristics of Holocene sediments from Chuadanga district, Bangladesh: Implications for weathering, climate, redox conditions, provenance and tectonic setting. Chinese Journal of Geochemistry, 33(4), 336–350. https://doi.org/10.1007/s11631-014-0696-9.

    Article  Google Scholar 

  38. Howarth, R. J. (1998). Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. American Journal of Science, 298(7), 594–607.

    Article  Google Scholar 

  39. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The Effect of grain size on detrital modes: a test of the gazzi-dickinson point-counting method. SEPM Journal of Sedimentary Research, 54(1), 103–116.

    Google Scholar 

  40. Islam, R., Ghosh, S. K., Vyshnavi, S., & Sundriyal, Y. P. (2011). Petrography, geochemistry and regional significance of crystalline klippen in the Garhwal Lesser Himalaya India. Journal of Earth System Science, 120(3), 489–501. https://doi.org/10.1007/s12040-011-0086-1.

    Article  Google Scholar 

  41. Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., & Koons, P. O. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67(1), 29–46. https://doi.org/10.1016/S0016-7037(02)01053-0.

    Article  Google Scholar 

  42. Jin, Z., Li, F., Cao, J., Wang, S., & Yu, J. (2006). Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80(3–4), 147–163. https://doi.org/10.1016/j.geomorph.2006.02.006.

    Article  Google Scholar 

  43. Kohn, M. J., Paul, S. K., & Corrie, S. L. (2010). The lower Lesser Himalayan sequence: a Paleoproterozoic arc on the northern margin of the Indian plate. Geological Society of America Bulletin, 122(3–4), 323–335. https://doi.org/10.1130/B26587.1.

    Article  Google Scholar 

  44. Kroonenberg, S. B. (1994). Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In Proceedings of the 29th international geological congress, Part A (Vol. 69, p. 81).

  45. Kundu, A., Matin, A., & Eriksson, P. G. (2016). Petrography and geochemistry of the Middle Siwalik sandstones (tertiary) in understanding the provenance of sub-Himalayan sediments in the Lish River Valley, West Bengal India. Arabian Journal of Geosciences, 9(2), 162. https://doi.org/10.1007/s12517-015-2261-1.

    Article  Google Scholar 

  46. Kundu, A., Matin, A., & Mukul, M. (2012). Depositional environment and provenance of Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya India. Journal of Earth System Science, 121(1), 73–89. https://doi.org/10.1007/s12040-012-0154-1.

    Article  Google Scholar 

  47. Suttner, L. J., & Dutta, P. K. (1986). Alluvial Sandstone Composition and Paleoclimate, I. Framework Mineralogy. SEPM Journal of Sedimentary Research. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  48. Li, L., Ni, J., Chang, F., Yue, Y., Frolova, N., Magritsky, D., et al. (2020). Global trends in water and sediment fluxes of the world’s large rivers. Science Bulletin, 65(1), 62–69. https://doi.org/10.1016/j.scib.2019.09.012.

    Article  Google Scholar 

  49. Long, X., Yuan, C., Sun, M., Safonova, I., Xiao, W., & Wang, Y. (2012). Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21(2–3), 637–653. https://doi.org/10.1016/j.gr.2011.05.015.

    Article  Google Scholar 

  50. López, J. M. G., Bauluz, B., Fernández-Nieto, C., & Oliete, A. Y. (2005). Factors controlling the trace-element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214(1–2), 1–19. https://doi.org/10.1016/j.chemgeo.2004.08.024.

    Article  Google Scholar 

  51. Macdonald, E. H. (2007). Handbook of gold exploration and evaluation (1st Edition). Woodhead Publishing.

  52. Maharana, C., Srivastava, D., & Tripathi, J. K. (2018). Geochemistry of sediments of the Peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chemical Geology, 483, 1–20. https://doi.org/10.1016/j.chemgeo.2018.02.019.

    Article  Google Scholar 

  53. Mange, M. A., & Maurer, H. (1992). Heavy minerals in colour. Berlin: Springer Science & Business Media.

    Google Scholar 

  54. Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7(3), 173–206. https://doi.org/10.1016/0304-4203(79)90039-2.

    Article  Google Scholar 

  55. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1), 169–200.

    Google Scholar 

  56. McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers. https://doi.org/10.1130/SPE284-p21.

    Article  Google Scholar 

  57. McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., & Ducea, M. (2008). Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters, 272(1–2), 105–117. https://doi.org/10.1016/j.epsl.2008.04.030.

    Article  Google Scholar 

  58. Miller, C., Thoni, M., Frank, W., Grasemann, B., Klotzli, U., Guntli, P., & Draganits, E. (2001). The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine, 138(3), 237–251. https://doi.org/10.1017/S0016756801005283.

    Article  Google Scholar 

  59. Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1–21. https://doi.org/10.2307/30060512.

    Article  Google Scholar 

  60. Mottram, C. M., Argles, T. W., Harris, N. B. W., Parrish, R. R., Horstwood, M. S. A., Warren, C. J., & Gupta, S. (2014). Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. Journal of the Geological Society, 171(2), 255–268. https://doi.org/10.1144/jgs2013-064.

    Article  Google Scholar 

  61. Mukul, M. (2010). First-order kinematics of wedge-scale active Himalayan deformation: insights from Darjiling–Sikkim–Tibet (DaSiT) wedge. Journal of Asian Earth Sciences, 39(6), 645–657. https://doi.org/10.1016/j.jseaes.2010.04.029.

    Article  Google Scholar 

  62. Nakayama, K., & Nakamura, T. (2005). X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads. Analytical Sciences, 21(7), 815–822. https://doi.org/10.2116/analsci.21.815.

    Article  Google Scholar 

  63. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0.

    Article  Google Scholar 

  64. Nesbitt, H. W., & Young, G. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3.

    Article  Google Scholar 

  65. Ni, J. F. (1989). Active tectonics of the Himalaya. Journal of Earth System Science, 98(1), 71–89. https://doi.org/10.1007/BF02880377.

    Article  Google Scholar 

  66. Noa Tang, S. D., Ntsama Atangana, J., & Onana, V. L. (2020). Mineralogy and geochemistry of alluvial sediments from the Kadey plain, eastern Cameroon: implications for provenance, weathering, and tectonic setting. Journal of African Earth Sciences, 163, 103763. https://doi.org/10.1016/j.jafrearsci.2020.103763.

    Article  Google Scholar 

  67. Ohta, T., & Arai, H. (2007). Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology, 240(3–4), 280–297. https://doi.org/10.1016/j.chemgeo.2007.02.017.

    Article  Google Scholar 

  68. Oni, S. O., & Olatunji, A. S. (2017). Depositional environments signatures, maturity and source weathering of Niger Delta sediments from an oil well in southeastern Delta State, Nigeria. Eurasian Journal of Soil Science, 6(3), 259. https://doi.org/10.18393/ejss.297245.

    Article  Google Scholar 

  69. Pandey, R. (2013). Evidences of active continental arc setting from Lesser and Higher Himalayan granitoids, Bhutan Himalaya. Journal of Earth Science and Climate Change, 4, 121.

    Google Scholar 

  70. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone. Plate motions inferred from major element chemistry of lutites. Precambrian Research, 147, 124–147.

    Google Scholar 

  71. Potter, P. E. (1978). Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4), 423–449.

    Article  Google Scholar 

  72. Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001.

    Article  Google Scholar 

  73. Rahman, M. M., Arya, D. S., Goel, N. K., & Dhamy, A. P. (2011). Design flow and stage computations in the Teesta River, Bangladesh, using frequency analysis and MIKE 11 modeling. Journal of Hydrologic Engineering, 16(2), 176–186. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000299.

    Article  Google Scholar 

  74. Rahman, M. J. J., & Suzuki, S. (2007). Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: implications for provenance, tectonic setting and weathering. Geochemical Journal, 41(6), 415–428. https://doi.org/10.2343/geochemj.41.415.

    Article  Google Scholar 

  75. Ramesh, R., Ramanathan, A. L., Ramesh, S., Purvaja, R., & Subramanian, V. (2000). Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochemical Journal, 34(4), 295–319. https://doi.org/10.2343/geochemj.34.295.

    Article  Google Scholar 

  76. Ranjan, N., & Banerjee, D. M. (2009). Central Himalayan crystallines as the primary source for the sandstone–mudstone suites of the Siwalik Group: new geochemical evidence. Gondwana Research, 16(3–4), 687–696. https://doi.org/10.1016/j.gr.2009.07.005.

    Article  Google Scholar 

  77. Reimann, K. U., & Hiller, K. (1993). Geology of Bangladesh. Berlin: Gebruder Borntraeger.

    Google Scholar 

  78. Roser, B. P., Cooper, R. A., Nathan, S., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39(1), 1–16. https://doi.org/10.1080/00288306.1996.9514690.

    Article  Google Scholar 

  79. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5), 635–650. https://doi.org/10.1086/629071.

    Article  Google Scholar 

  80. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1–2), 119–139. https://doi.org/10.1016/0009-2541(88)90010-1.

    Article  Google Scholar 

  81. Roy, D. K., & Roser, B. P. (2013). Geochemical evolution of the Tertiary succession of the NW shelf, Bengal basin, Bangladesh: Implications for provenance, paleoweathering and Himalayan erosion. Journal of Asian Earth Sciences, 78, 248–262. https://doi.org/10.1016/j.jseaes.2013.04.045.

    Article  Google Scholar 

  82. Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53(5), 997–1009. https://doi.org/10.1016/0016-7037(89)90205-6.

    Article  Google Scholar 

  83. Sharma, A., & Rajamani, V. (2000). Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: implications to neotectonics of the region. Chemical Geology, 166(3–4), 203–223. https://doi.org/10.1016/S0009-2541(99)00222-3.

    Article  Google Scholar 

  84. Singh, M., Sharma, M., & Tobschall, H. J. (2005). Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River. Applied Geochemistry, 20(1), 1–21. https://doi.org/10.1016/j.apgeochem.2004.07.005.

    Article  Google Scholar 

  85. Singh, P. (2010). Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region India. Chemical Geology, 269(3–4), 220–236. https://doi.org/10.1016/j.chemgeo.2009.09.020.

    Article  Google Scholar 

  86. Tandon, S. K., & Gupta, N. (2020). Introduction to geodynamics of the Indian plate: evolutionary perspectives. Cham: Springer. https://doi.org/10.1007/978-3-030-15989-4_1.

    Google Scholar 

  87. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  88. Thakur, V. C. (2013). Active tectonics of Himalayan frontal fault system. International Journal of Earth Sciences, 102(7), 1791–1810. https://doi.org/10.1007/s00531-013-0891-7.

    Article  Google Scholar 

  89. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014.

    Article  Google Scholar 

  90. Viers, J., Dupré, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407(2), 853–868. https://doi.org/10.1016/j.scitotenv.2008.09.053.

    Article  Google Scholar 

  91. von Eynatten, H., & Gaupp, R. (1999). Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124(1–4), 81–111. https://doi.org/10.1016/S0037-0738(98)00122-5.

    Article  Google Scholar 

  92. Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371.

    Article  Google Scholar 

  93. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51(9), 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6.

    Article  Google Scholar 

  94. Xie, Y., Yuan, F., Zhan, T., Kang, C., & Chi, Y. (2018). Geochemical and isotopic characteristics of sediments for the Hulun Buir Sandy Land, northeast China: implication for weathering, recycling and dust provenance. CATENA, 160, 170–184. https://doi.org/10.1016/j.catena.2017.09.008.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sudeb Chandra Das for his instructive comments in data analyzing, and the IMMM staff for their valuable contribution in sample collection and obtaining data in the lab. We would like to express our special acknowledgment to Priyadarsi D. Roy for his constructive and valuable reviews to enhance the quality of the manuscript. Finally, we would like to thank Mst. Arifa Akter for her cordial support offering imperative suggestions to build up the manuscript.

Funding

No funding was received for conducting this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md. Mahabubur Rahman.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1: Online Resource 1

Mineralogical weight percentage in the bulk sediments of the Dharla River.

Supplementary file 2: Online Resource 2

Major element (in wt%) and trace element (in ppm) compositions along with CIA (Chemical index of alteration), PIA (Plagioclase index of alteration), W (Source rock weathering index), ICV (Index of compositional variability), and element ratios of the Dharla River sediments.

Supplementary file 3: Online Resource 3

Rare earth elements (REE; in ppm) composition and element ratios of the Dharla River sediments.

Supplementary file 4: Online Resource 4

Pearson’s correlation matrix using geochemical parameters of clastic sediment collected from the different locations along the Dharla River.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Hasan, M.F., Hasan, A.S.M.M. et al. Chemical weathering, provenance, and tectonic setting inferred from recently deposited sediments of Dharla River, Bangladesh. J. Sediment. Environ. 6, 73–91 (2021). https://doi.org/10.1007/s43217-020-00046-z

Download citation

Keywords

  • Geochemistry
  • Petrography
  • Mineralogy
  • Chemical index of alteration (CIA)
  • A–CN–K
  • Major and trace elements
  • Rare earth element (REE)
  • Fluvial sediments
  • Brahmaputra
  • Himalayan source