Research progress of defective MoS2 for photocatalytic hydrogen evolution

Abstract

The potential application of MoS2 as a potential H2 precipitation photocatalyst has received widespread attention and is considered a promising alternative to precious metal cocatalysts due to its richness and low cost. However, the catalytic active center of MoS2 is only along the edge of the MoS2 layer. Both theoretical and experimental studies have shown that defect engineering can increase the active site of MoS2 and has superior activity in catalytic reactions. Therefore, this review describes the nature, defect types, and preparation of defective MoS2. Due to the recombination of MoS2 and semiconductor has specific interface characteristics, Schottky heterojunctions can provide accelerated charge separation and lower Schottky barriers for photocatalytic applications, they are effective photocatalysts. Therefore, the preparation of the defect MoS2-supported semiconductor photocatalyst and its application in the photocatalytic water splitting reaction are also introduced. This article’s profound understanding of defects can consolidate basic photocatalysis theory and provide new insights for the rational design of satisfactory defect engineering photocatalytic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    F. Zhang, X. Li, X. Sun, C. Kong, W. Xie, Z. Li, J. Liu, Surface partially oxidized MoS2 nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production. Appl. Surf. Sci. 487, 734–742 (2019)

    CAS  Google Scholar 

  2. 2.

    Y. Zhang, L. Han, C. Wang, W. Wang, T. Ling, J. Yang, X.W. Du, Zinc-blende CdS nanocubes with coordinated facets for photocatalytic water splitting. ACS Catal. 7(2), 1470–1477 (2017)

    CAS  Google Scholar 

  3. 3.

    J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013)

    CAS  Google Scholar 

  4. 4.

    G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, P.M. Ajayan, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16(2), 1097–1103 (2016)

    CAS  Google Scholar 

  5. 5.

    K.D. Rasamani, Z. Li, Y. Sun, Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods. Nanoscale 8(44), 18621–18625 (2016)

    CAS  Google Scholar 

  6. 6.

    Z. Wu, X. Liu, J. Liu, S. Liu, Z. Cha, Z. Chen, Synthesis, photocatalytic degradation and hydrogen production characteristics of molybdenum disulfide-based composite materials. Prog. Chem. 31(8), 1086–1102 (2019). ((in Chinese))

    Google Scholar 

  7. 7.

    Q. Li, X.Q. Qiao, Y. Jia, D. Hou, D.S. Li, Noble-metal-free amorphous CoMoSx modified CdS core-shell nanowires for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Surf. Sci. 498, 143863 (2019)

    CAS  Google Scholar 

  8. 8.

    Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016)

    CAS  Google Scholar 

  9. 9.

    J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017)

    CAS  Google Scholar 

  10. 10.

    Y. Wang, Y. Li, S. Cao, J. Yu, Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chin. J. Catal. 40(6), 867–874 (2019)

    CAS  Google Scholar 

  11. 11.

    H. Che, C. Li, P. Zhou, C. Liu, H. Dong, C. Li, Band structure engineering and efficient injection rich-π-electrons into ultrathin g-C3N4 for boosting photocatalytic H2 production. Appl. Surf. Sci. 505, 144564 (2020)

    CAS  Google Scholar 

  12. 12.

    C.C. Cheng, A.Y. Lu, C.C. Tseng, X. Yang, M.N. Hedhili, M.C. Chen, L.J. Li, Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 30, 846–852 (2016)

    CAS  Google Scholar 

  13. 13.

    Y.X. Ouyang, C.Y. Ling, Q. Chen, Z.L. Wang, L. Shi, J.L. Wang, Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28(12), 4390–4396 (2016)

    CAS  Google Scholar 

  14. 14.

    G. Li, C. Fu, J. Wu, J. Rao, S.C. Liou, X. Xu, X. Liu, Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B: Environ. 254, 1–6 (2019)

    CAS  Google Scholar 

  15. 15.

    S. Liu, S. Li, K. Sekar, R. Li, Y. Zhu, R. Xing, A. Fujishima, Hierarchical ZnS@C@MoS2 core-shell nanostructures as efficient hydrogen evolution electrocatalyst for alkaline water electrolysis. Int. J. Hydro. Energy 44(47), 25310–25318 (2019)

    CAS  Google Scholar 

  16. 16.

    G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik, A. Du, Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′ phase. J. Phys. Chem. C 119(23), 13124–13128 (2015)

    CAS  Google Scholar 

  17. 17.

    Q. Tang, D.E. Jiang, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6(8), 4953–4961 (2016)

    CAS  Google Scholar 

  18. 18.

    S. Su, Q. Zhou, Z. Zeng, D. Hu, X. Wang, M. Jin, J. Liu, Ultrathin alumina mask-assisted nanopore patterning on monolayer MoS2 for highly catalytic efficiency in hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10(9), 8026–8035 (2018)

    CAS  Google Scholar 

  19. 19.

    Y. Zhang, Y. Kuwahara, K. Mori, H. Yamashita, Defect engineering of MoS2 and its impacts on electrocatalytic and photocatalytic behavior in hydrogen evolution reactions. Chem-Aslan J 14(2), 278–285 (2018)

    CAS  Google Scholar 

  20. 20.

    J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, X. Bao, Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015)

    CAS  Google Scholar 

  21. 21.

    Z. Hai, J. Du, K.M. Akbari, C. Xue, H. Xu, S. Zhuiykov, Carbon-doped MoS2 nanosheet photocatalysts for efficient degradation of methyl orange. Ionics 23(7), 1921–1925 (2017)

    CAS  Google Scholar 

  22. 22.

    S. Kumar, A. Kumar, V.N. Rao, A. Kumar, M.V. Shankar, V. Krishnan, Defect-rich MoS2 ultrathin nanosheets-coated nitrogen-doped ZnO nanorod heterostructures: an insight into in-situ-generated ZnS for enhanced photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2(8), 5622–5634 (2019)

    CAS  Google Scholar 

  23. 23.

    K.C. Kwon, S. Choi, J. Lee, K. Hong, W. Sohn, D.M. Andoshe, K.S. Choi, Y. Kim, S. Han, S.Y. Kim, H.W. Jang, Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J. Mater. Chem. A 5(30), 15534–15542 (2017)

    Google Scholar 

  24. 24.

    D.M. Andoshe, G. Jin, C.S. Lee, C. Kim, K.C. Kwon, S. Choi, W. Sohn, C.W. Moon, S.H. Lee, J.M. Suh, S. Kang, J. Park, H. Heo, J.K. Kim, S. Han, M.H. Jo, H.W. Jang, Directly assembled 3D molybdenum disulfide on silicon wafer for efficient photoelectrochemical water reduction. Adv. Sustain. Syst. 2(3), 1700142 (2018)

    Google Scholar 

  25. 25.

    K.C. Kwon, S. Choi, K. Hong, C.W. Moon, Y. Shim, D.H. Kim, T. Kim, W. Sohn, J. Jeon, C. Lee, K.T. Nam, S. Han, S.Y. Kim, H.W. Jang, Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9(7), 2240–2248 (2016)

    CAS  Google Scholar 

  26. 26.

    J. Lee, S. Kang, K. Yim, K.Y. Kim, H.W. Jang, Y. Kang, S. Han, Hydrogen evolution reaction at anion vacancy of two-dimensional transition-metal dichalcogenides: ab initio computational screening. J. Phys. Chem. Lett. 9(8), 2049–2055 (2018)

    CAS  Google Scholar 

  27. 27.

    J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135(47), 17881–17888 (2013)

    CAS  Google Scholar 

  28. 28.

    N.H. Kwona, S.J. Shinb, X. Jina, Y. Jungc, G.S. Hwangc, H. Kimb, S.J. Hwang, Monolayered g-C3N4 nanosheet as an emerging cationic building block for bifunctional 2D superlattice hybrid catalysts with controlled defect structures. Appl. Catal. B Environ. 277, 119191 (2020)

    Google Scholar 

  29. 29.

    A. Khalil, Q. Liu, Z. Muhammad, M. Habib, R. Khan, Q. He, Q. Fang, H.T. Masood, Z.U. Rehman, T. Xiang, C.Q. Wu, L. Song, Synthesis of Ni9S8/MoS2 heterocatalyst for enhanced hydrogen evolution reaction. Langmuir 33(21), 5148–5153 (2017)

    CAS  Google Scholar 

  30. 30.

    Y.P. Yuan, L.S. Yin, S.W. Cao, G.S. Xu, C.H. Li, C. Xue, Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Appl. Catal. B Environ. 168–169, 572–576 (2015)

    Google Scholar 

  31. 31.

    S. Zhang, H. Yang, H. Gao, R. Cao, J. Huang, X. Xu, One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 9(28), 23635–23646 (2017)

    CAS  Google Scholar 

  32. 32.

    P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett. 4(7), 1687–1709 (2019)

    CAS  Google Scholar 

  33. 33.

    K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li, J. Ye, Targeted synthesis of 2H- and 1T-Phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28(45), 10033–10041 (2016)

    CAS  Google Scholar 

  34. 34.

    M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

    Google Scholar 

  35. 35.

    S. Shi, Z. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6(47), 23932–23977 (2018)

    CAS  Google Scholar 

  36. 36.

    D. Tan, M. Willatzen, Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 56, 512–515 (2019)

    Google Scholar 

  37. 37.

    D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11(3), 218–230 (2016)

    CAS  Google Scholar 

  38. 38.

    Z.Y. Zhao, Q.L. Liu, Study of the layer-dependent properties of MoS2 nanosheets with different crystal structures by DFT calculations. Catal. Sci. Technol. 8(7), 1867–1879 (2018)

    CAS  Google Scholar 

  39. 39.

    S.W. Han, Y.H. Hwang, S.H. Kim, W.S. Yun, J.D. Lee, M.G. Park, S. Ryu, J.S. Park, H.D. Yoo, S.P. Yoon, S.C. Hong, K.S. Kim, Y.S. Park, Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett 110, 247201 (2013)

    Google Scholar 

  40. 40.

    X.L. Yin, L.L. Li, M.L. Liu, D.C. Li, L. Shang, J.M. Dou, MoSx/CdS nano-heterostructures accurately constructed on the defects of CdS for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 370, 305–313 (2019)

    CAS  Google Scholar 

  41. 41.

    D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007)

    Google Scholar 

  42. 42.

    Z. Zhang, Y. Dong, H. Sun, G. Liu, S. Liu, X. Yang, Defect-rich 2D reticulated MoS2 monolayers: facile hydrothermal preparation and marvellous photoelectric properties. J. Taiwan Inst. Chem. Eng. 101, 221–230 (2019)

    CAS  Google Scholar 

  43. 43.

    W.M. Parkin, A. Balan, L.B. Liang, P.M. Das, M. Lamparski, C.H. Naylor, J.A. Rodríguez-Manzo, A.T. Charlie Johnson, V. Meunier, M. Drndic, Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10, 4134–4142 (2016)

    CAS  Google Scholar 

  44. 44.

    Y. Li, B. Sun, H. Lin, Q. Ruan, Y. Geng, J. Liu, H. Wang, Y. Yang, L. Wang, K.C. Tam, Efficient visible-light induced H2 evolution from T-CdxZn1-xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Appl. Catal. B Environ. 271, 118866 (2020)

    Google Scholar 

  45. 45.

    L. Liu, X. Liu, S. Jiao, CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. J. Colloid Interface Sci. 564, 77–87 (2020)

    CAS  Google Scholar 

  46. 46.

    Y. Li, K. Yin, L. Wang, X. Lu, Y. Zhang, Y. Liu, D. Yan, Y. Song, S. Luo, Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B Environ. 239, 537–544 (2018)

    CAS  Google Scholar 

  47. 47.

    X. Zhang, N. Li, J. Wu, Y. Zheng, X. Tao, Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects. Appl. Catal. B Environ. 229, 227–236 (2018)

    CAS  Google Scholar 

  48. 48.

    M. Fan, Q. Xie, X. Cai, W. Cen, Z. Luo, X. Guo, W. Yan, Effect of point defects on electronic structure and optical properties of monolayer MoS2. J. At. Mol. Phys 32(3), 457–462 (2015). ((in Chinese))

    Google Scholar 

  49. 49.

    H. Yi, X. Zhang, F. Jia, Z. Wei, Y. Zhao, S. Song, Competition of Hg2+ adsorption and surface oxidation on MoS2 surface as affected by sulfur vacancy defects. Appl. Surf. Sci. 483, 521–528 (2019)

    CAS  Google Scholar 

  50. 50.

    D. Le, T.B. Rawal, T.S. Rahman, Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J. Phys. Chem. C 118, 5346–5351 (2014)

    CAS  Google Scholar 

  51. 51.

    C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Nørskov, X. Zheng, F. Abild-Pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun 8, 15113 (2017)

    Google Scholar 

  52. 52.

    W. He, J. Shi, H. Zhao, H. Wang, X. Liu, X. Shi, Bandgap engineering of few-layered MoS2 with low concentrations of S vacancies. RSC Adv. 10, 15702–15706 (2020)

    CAS  Google Scholar 

  53. 53.

    Y. Liu, Y. Xie, L. Liu, J. Jiao, Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal. Sci. Technol. 7(23), 5635–5643 (2017)

    CAS  Google Scholar 

  54. 54.

    A.Y. Lu, X. Yang, C.C. Tseng, S. Min, S.H. Lin, C.L. Hsu, L.J. Li, High-sulfur-vacancy amorphous molybdenum sulfide as a high current electrocatalyst in hydrogen evolution. Small 12(40), 5530–5537 (2016)

    CAS  Google Scholar 

  55. 55.

    J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013)

    CAS  Google Scholar 

  56. 56.

    J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015)

    CAS  Google Scholar 

  57. 57.

    W. Zhou, H. Fu, Defect-mediated electron-hole separation in semiconductor photocatalysis. Inorg. Chem. Front. 5(6), 1240–1254 (2018)

    CAS  Google Scholar 

  58. 58.

    X. Jiao, X. Li, X. Jin, X. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017)

    CAS  Google Scholar 

  59. 59.

    Z. He, Z. Guo, X. Zhong, X. Chen, J. Xue, X. Wang, Y. Chen, Spectroscopic investigation of defects mediated oxidization of single-layer MoS2. Sci. China Tech. Sci. (2020). https://doi.org/10.1007/s11431-020-1593-4

    Article  Google Scholar 

  60. 60.

    W. Xie, X. Li, F. Zhang, Mo-vacancy induced high performance for photocatalytic hydrogen production over MoS2 nanosheets cocatalyst. Chem. Phys. Lett. 746, 137276 (2020)

    CAS  Google Scholar 

  61. 61.

    H. Lin, Y. Li, H. Li, X. Wang, Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano. Res. 10(4), 1377–1392 (2017)

    CAS  Google Scholar 

  62. 62.

    F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano. Lett. 15(10), 6777–6784 (2015)

    CAS  Google Scholar 

  63. 63.

    K. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2. Mater. Today 20(2), 83–91 (2017)

    CAS  Google Scholar 

  64. 64.

    J. Hong, C. Jin, J. Yuan, Z. Zhang, Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29(14), 1606434 (2017)

    Google Scholar 

  65. 65.

    Z. Lin, B.R. Carvalho, E. Kahn, R.T. Lv, R. Rao, H. Terrones, M.A. Pimenta, M. Terrones, Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016)

    Google Scholar 

  66. 66.

    A. Syari’Ati, S. Kumar, A. Zahid, J. Ye, P. Rudolf, Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem. Commun. 55, 10384–10387 (2019)

    CAS  Google Scholar 

  67. 67.

    W. Wu, C. Zhang, L. Zhou, S. Hou, L. Zhang, High throughput synthesis of defect-rich MoS2 nanosheets via facile electrochemical exfoliation for fast high-performance lithium storage. J. Colloid Interface Sci. 542, 263–268 (2019)

    CAS  Google Scholar 

  68. 68.

    D.M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, Y.S. Jung, Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 9, 12115 (2015)

    CAS  Google Scholar 

  69. 69.

    B. Peng, G.N. Yu, Y.W. Zhao, Q. Xu, G.C. Xing, X.F. Liu, D.Y. Fu, B. Liu, J.R. Sherman Tan, W. Tang, H.P. Lu, J.L. Xie, L.J. Deng, T.C. Sum, K.P. Loh, Achieving ultrafast hole transfer at the monolayer MoS2 and CH3NH3PbI3 perovskite interface by defect engineering. ACS Nano 10, 6383–6391 (2016)

    CAS  Google Scholar 

  70. 70.

    Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee, S. Bobek, K. Yamaguchi, E. Li, P.M. Odenthal, A. Nguyen, D. Barroso, D. Sun, G. Von Son Palacio, M. Gomez, A. Nguyen, D. Le, G. Pawin, J. Mann, T.F. Heinz, T.S. Rahman, L. Bartels, Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8, 4672 (2014)

    CAS  Google Scholar 

  71. 71.

    S. Kumar, A. Kumar, V.N. Rao, A. Kumar, V. Krishnan, Defect-rich MoS2 ultrathin nanosheets-coated nitrogen-doped ZnO nanorod heterostructures: an insight into in-situ-generated ZnS for enhanced photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2(8), 5622–5634 (2019)

    CAS  Google Scholar 

  72. 72.

    C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, S. Zulfiqar, S. Shah, Recent advances in MXenes supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications. J. Ind. Eng. Chem 85, 1–33 (2020)

    CAS  Google Scholar 

  73. 73.

    Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, Yo. Yan, M. Meng, Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 384, 123275 (2020)

    CAS  Google Scholar 

  74. 74.

    J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 379, 122282 (2020)

    CAS  Google Scholar 

  75. 75.

    J. Tian, Z. Chen, J. Jing, C. Feng, M. Sun, W. Li, Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method. J. Photoch. Photobio. A 390, 112260 (2020)

    CAS  Google Scholar 

  76. 76.

    K. Zhang, Y. Liu, J. Deng, S. Xie, H. Lin, X. Zhao, J. Yang, Z. Han, H. Dai, Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Appl. Catal. B Environ. 202, 569–579 (2017)

    CAS  Google Scholar 

  77. 77.

    Y. Yang, W.H. Fang, R. Long, Disparity in photoexcitation dynamics between vertical and lateral MoS2/WSe2 heterojunctions: time-domain simulation emphasizes the importance of donor-acceptor interaction and band alignment. J. Phys. Chem. Lett. 8(23), 5771–5778 (2017)

    CAS  Google Scholar 

  78. 78.

    H.F. Lin, B.W. Sun, H. Wang, Q.Q. Ruan, Y.L. Geng, Y.Y. Li, J.K. Wu, W.J. Wang, J. Liu, X. Wang, Unique 1D Cd1−xZnxS@O-MoS2/NiOx nanohybrids: highly efficient visible-light-driven photocatalytic hydrogen evolution via integrated structural regulation. Small 15, 29 (2019)

    Google Scholar 

  79. 79.

    S. Bertolazzi, S. Bonacchi, G.J. Nan, A. Pershin, D. Beljonne, P. Samorì, Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 29, 1606760 (2017)

    Google Scholar 

  80. 80.

    S. Kang, J.J. Koo, H. Seo, Q.T. Truong, J.B. Park, S.C. Park, Y. Jung, S.P. Cho, K.T. Nam, Z.H. Kim, B.H. Hong, Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution. J. Mater. Chem. C 33, 10173–10178 (2019)

    Google Scholar 

  81. 81.

    H.N. Wang, C.J. Zhang, F. Rana, Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015)

    CAS  Google Scholar 

  82. 82.

    J. Xiong, Y. Liu, D. Wang, S. Liang, W. Wu, L. Wu, An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrysta. J. Mater. Chem. A. 3(24), 12631–12635 (2015)

    CAS  Google Scholar 

  83. 83.

    S. Peng, Y. Jiang, Z. Wang, X. Luo, J. Lu, L. Han, Y. Ding, Y. Ding, Introducing a porous container and a defect-rich cocatalyst coating over CdS nanoparticles for promotion of photocatalytic hydrogen evolution. Catal. Lett. 150, 3533–3541 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major Projects of Natural Science Research in Anhui Colleges and Universities (KJ2018ZD050, GXXT-2019-017), Natural Science Foundation of Anhui province (1808085ME129), Key research and development plan of Anhui Province (202004a05020060), Outstanding Young Talents Support Program in Colleges and Universities (gxyqZD2018056).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng-Jun Zhang or Won-Chun Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Kong, C., Zhang, FJ. et al. Research progress of defective MoS2 for photocatalytic hydrogen evolution. J. Korean Ceram. Soc. 58, 135–147 (2021). https://doi.org/10.1007/s43207-020-00103-3

Download citation

Keywords

  • Defect MoS2
  • Photocatalytic hydrogen evolution
  • MoS2-supported semiconductor photocatalyst