Modeling dye-sensitized solar cells with graphene based on nanocomposites in the Brillouin zone and density functional theory


Graphene-based nanocomposites are usable as flexible transparent displays for electronic devices. However, the power conversions of graphene-based nanocomposites are more efficient than that of indium tin oxide. This outlook property can alternative for graphene-based materials in solar cells. The strength of graphene is due its ability to enable various components in existing solar cells, leading to the overall improvement in power conversion efficiency. Graphene can act as an electron acceptor and intermediate layer in tandem solar cells. Depending on the properties of graphene and graphene-based material, researchers have modified the structure where the π-electron variety, donor–acceptor and conformation can be tuned to create a novel type of light-reaping materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    A. Low-Cost, High-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. 2.

    H. Matsui, K. Okada, T. Kitamura, N. Tanabe, Thermal stability of dye-sensitized solar cells with current collecting grid. Sol. Energy Mater. Sol. Cells 93(6), 1110–1115 (2009)

    CAS  Article  Google Scholar 

  3. 3.

    S.R. Sim, J.H. Yoon, U.C. Shin, A study on the effect of DSSC BIPV window system in office building considering cooling heating lighting energy. J. Kor. Sol. Energy Soc. 31(3), 67–72 (2011)

    Article  Google Scholar 

  4. 4.

    D. Wei, Dye sensitized solar cells. Int. J. Mol. Sci. 11(3), 1103–1113 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    I. Lee, S. Hwang, H. Kim, Reaction between oxide sealant and liquid electrolyte in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 95(1), 315–317 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables. Prog. Photovolt Res. Appl. 22, 701–710 (2014)

    Article  Google Scholar 

  7. 7.

    Y. Noh, K. Yoo, B. Yu, J. Han, M. Ko, O. Song, Ru employed as counter electrode for TCO-less dye sensitized solar cells. Korean J. Met. Mater. 50(2), 159–163 (2013)

    Google Scholar 

  8. 8.

    Y. Noh, O. Song, Properties of the nano-thick Cr/Pt bilayered catalytic layer employed dye sensitized solar cells. Korean J. Met. Mater. 52(4), 249–254 (2012)

    Article  CAS  Google Scholar 

  9. 9.

    M.M. Noor, M.H. Buraidah, M.A. Careem, S.R. Majid, A.K. Arof, An Optimized poly(vinylidene fluoride-hexafluoropropylene)-nai gel polymer electrolyte and its application in natural dye sensitized solar cells. Electrochim. Acta 121, 159–167 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    R. Lessmann, I.A. Hummelgen, Thin copolymer-cased light-emitting display made with fuorine-foped tin oxide substrates. Mater. Res. 7, 467–471 (2004)

    CAS  Article  Google Scholar 

  11. 11.

    B. Kılıç, N. Gedik, S.P. Mucur, A.S. Hergul, E. Gür, Band gap engineering and modifying surface of TiO2 nano structures by Fe2O3 for enhanced-performance of dye sensitized solar cell. Mater. Sci. Semicond. Process 31, 363–371 (2015)

    Article  CAS  Google Scholar 

  12. 12.

    Y. Noh, K. Kim, M. Choi, O. Song, Properties of working electrodes with nano diamond addition in a dye sensitized solar cell. Korean J. Met. Mater. 54(1), 57–62 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    S.H. Lee, J. Kwon, D.Y. Kim, K. Song, S.H. Oh, J. Cho, E.F. Schubert, J.H. Park, J.K. Kim, Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Sol. Energy Mater. Sol. Cells 132, 47–55 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    A. Sangiorgi, R. Bendoni, N. Sangiorgi, A. Sanson, B. Ballarin, Optimized TiO2 BL for dye-sensitized solar cells. Ceram. Int. 40, 10727–10735 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, C. Jiang, Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island. Nanoscale Res. Lett. 7, 239–244 (2012)

    Article  CAS  Google Scholar 

  16. 16.

    D.Y. Kim, J. Kim, J. Kim, A. Kim, G. Lee, M. Kang, The photovoltaic efficiencies on dye sensitized solar cells assembled with nanoporous carbon/TiO2 composites. J. Ind. Eng. Chem. 18, 1–5 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    S. Zhang, H. Niu, Y. Lan, C. Cheng, J. Xu, X. Wang, Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115, 22025–22034 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    M. Pawlyta, J. Roudzaud, S. Duber, Raman micro-spectroscopy characterization of carbon black: spectral analysis and structural information. Carbon 84, 479–490 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    C. Ting, W. Chao, Efficiency Improvement of the DSSCs by building the carbon black as bridge in photoelectrode. Appl. Energy 87, 2500–2505 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    J. Eom, Y. Kim, I. Song, Effect of SiC filler content on microstructure and flexural strength of highly porous SiC ceramics fabricated from carbon-filled polysiloxane. J. Korean Ceram. Soc. 49(6), 625–630 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  22. 22.

    S.W. Lee, K.K. Kim, Y. Cui, S.C. Lim, Y.W. Cho, S.M. Kim, Y.H. Lee, Adhesion test of carbon nanotube film coated onto transparent conducting substrates. NANO 5, 133–138 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    K. Fujuhara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnol 18(36), 365709 (2007)

    Article  CAS  Google Scholar 

  24. 24.

    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Gräzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog. Photovol. Res. Appl. 15(7), 603–612 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Kim, I. Lee, Y. Song, M. Lee, B. Kim, N. Cho, D.Y. Lee, Influence of TiO2 coating thickness on energy con- version efficiency of dye-sensitized solar cell. Electron. Mater. Lett. 10(2), 445–449 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    J. Greulich, M. Glatthaar, S. Rein, Fill factor analysis of solar cells’ current-voltage curves. Prog. Photovol. Res. Appl. 18(7), 511–515 (2010)

    Article  Google Scholar 

  27. 27.

    Y. Areerob, W.-C. Oh, Modified quaternary nanostructure on graphene sheets as counter electrode for dye-sensitized solar cells. JMMP 9(1), 149–166 (2019)

    Google Scholar 

  28. 28.

    E.-C. Shin, J.J. Ma, P.-A. Ahn, H.-H. Seo, D.T. Nguyen, J.-S. Lee, Deconvolution of four transmission-line-model impedances in Ni-YSZ/YSZ/LSM solid oxide cells and mechanistic insights. Electrochim. Acta 188, 240–253 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    P. Shearing, J. Golbert, R. Chater, N. Brandon, 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem. Eng. Sci. 64(17), 3928–3933 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    A. Utz, H. Stormer, A. Leonide, A. Weber, E. Ivers-Tiffiiee, Degradation and relaxation effects of Ni patterned anodes in H2–H2O atmosphere. J. Electrochem. Soc. 157(6), B920–B930 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5(7), 541–544 (2006)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Areerob, W.-C. Oh, An alternative graphene composites and perovskite material as a counter electrode dye-sensitized Solar Cells for renewable energy. JMMP 9(1), 115–138 (2018)

    Google Scholar 

  33. 33.

    M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Rational SOFC material design: new advances and tools. Mater. Today 14(11), 534–546 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J.H. Yu, J. Mizusaki, J.-S. Lee, Polarization mechanism of high temperature electrolysis in a Ni–YSZ/YSZ/LSM solid oxide cell by parametric impedance analysis. Solid State Ionics 232, 80–96 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Areerob, K.Y. Cho, C.-H. Jung, W.-C. Oh, Synergetic effect of La2CdSnTiO4-WSe2 perovskite structured nanoparticles on graphene oxide for high efficiency of dye sensitized solar cells. J. Alloys Compd. 775, 690–697 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    J. Nielsen, T. Klemens, P. Blennow, Detailed impedance characterization of a well performing and durable Ni: CGO infiltrated cermet anode for metal-supported solid oxide fuel cells. J. Power Sources 219, 305–316 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13(20), 9083–9118 (2011)

    CAS  Article  Google Scholar 

  38. 38.

    A. Hadipour, B. de Boer, J. Wildeman, F.B. Kooistra, J.C. Hummelen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, P.W.M. Blom, Adv. Funct. Mater. 16, 1897–1903 (2006)

    CAS  Article  Google Scholar 

  39. 39.

    J. Bisquert, I. Mora-Sero, F. Fabregat-Santiago, Diffusion–recombination impedance model for solar cells with disorder and nonlinear recombination. ChemElectroChem 1(1), 289–296 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    W.-C. Oh, K.Y. Cho, C.-H. Jung, Y. Areerob, The viability of rumpled La2CrFeW6-CdSevperovskite wrapped by graphene for a viable efficiency and increased utilization of dye-sensitized solar cells. Mater. Technol 27, 1548551 (2018)

    Google Scholar 

  41. 41.

    A. Leonide, B. Ruger, A. Weber, W. Meulenberg, E. Ivers-Tiffee, Impedance study of alternative (La, Sr) FeO3−δ and (La, Sr)(Co, Fe)O3−δ MIEC cathode compositions. J. Electrochem. Soc. 157, B234–B239 (2010)

    CAS  Article  Google Scholar 

  42. 42.

    G.-R. Kim, H.-H. Seo, J.-M. Jo, E.-C. Shin, J.H. Yu, J.-S. Lee, Moving boundary diffusion problem for hydration kinetics evidenced in non-monotonic conductivity relaxations of proton conducting perovskites. Solid State Ionics 272, 60–73 (2015)

    CAS  Article  Google Scholar 

  43. 43.

    J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, J.-S. Lee, Electrical characterization of polycrystalline sodium β''-alumina: revisited and resolved. Solid State Ionics 264, 22–35 (2014)

    CAS  Article  Google Scholar 

  44. 44.

    X. Chen, Q. Tang, B. He, H. Chen, Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Adv. 54, 43402–43407 (2015)

    Article  CAS  Google Scholar 

  45. 45.

    J.-S. Lee, A superior description of AC behavior in polycrystalline solid electrolytes with current-constriction effects. J. Korean Ceram. Soc. 53(2), 150–161 (2016)

    CAS  Article  Google Scholar 

  46. 46.

    Z. Shi, A.H. Jayatissa, The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials (Basel) 11(1), 36 (2018)

    Article  CAS  Google Scholar 

  47. 47.

    S.W. Tong, Y. Wang, Y. Zheng, M.-F. Ng, K.P. Loh, Graphene intermediate layer in tandem organic photovoltaic cells. Adv. Func. Mater. 21, 4430–4434 (2011)

    CAS  Article  Google Scholar 

  48. 48.

    K.P. Loh, S.W. Tong, J. Wu, Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc (2015).

    Article  Google Scholar 

  49. 49.

    W.-C. Oh, S. Chanthai, Y. Areerob, Novel flexible Ag nanoparticles doped on graphene–Ba2GaInO6 as cathode T material for enhancement in the power conversion of DSSCs. Sol. Energy 180, 510–518 (2019)

    CAS  Article  Google Scholar 

  50. 50.

    P.-A. Ahn, E.-C. Shin, J.-M. Jo, J.H. Yu, S.-K. Woo, J.-S. Lee, Mixed conduction in ceramic hydrogen/steam electrodes by Hebb-Wagner polarization in the frequency domain. Fuel Cells 12, 1070–1084 (2012)

    CAS  Article  Google Scholar 

  51. 51.

    W. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry. J. Electrochem. Soc. 154, B548–B559 (2007)

    CAS  Article  Google Scholar 

  52. 52.

    S. Zhang, H. Niu, Y. Lan, C. Cheng, J. Xu, X. Wang, Synthesis of TiO2 nano particles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. 115, 22025–22034 (2011)

    CAS  Google Scholar 

  53. 53.

    W.-C. Oh, K.Y. Cho, C.-H. Jung, Y. Areerob, Three-dimensional of graphene oxide Ba2VPbSe6 framework composite attach on cellulose based counter electrode for dye-sensitized solar cell. J. Photochem. Photobiol. A 372, 11–20 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    Y. Areerob, J.Y. Cho, W.K. Jang, K.Y. Cho, W.-C. Oh, An alternative of NiCoSe doped graphene hybrid La6W2O15 for renewable energy conversion used in dye-sensitized solar cells. Solid State Ionics 327, 99–109 (2018)

    CAS  Article  Google Scholar 

  55. 55.

    W.C. Oh, Y. Areerob, A new aspect for band gap energy of graphene-Mg2CuSnCoO6-gallic acid as a counter electrode for enhancing dye-sensitized solar cell performance. ACS Appl. Mater. Interfaces 11(42), 38859–38867 (2019)

    CAS  Article  Google Scholar 

  56. 56.

    D. Yoon, H. Moon, H. Cheong, J.S. Choi, J.A. Choi, B.H. Park, Variations in the Raman spectrum as a function of the number of graphene layers. J. Korean Phys. Soc. 55, 1299–1303 (2009)

    CAS  Article  Google Scholar 

  57. 57.

    S. Reich, C. Thomsen, Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond 362, 2271–2288 (2004)

    CAS  Article  Google Scholar 

  58. 58.

    W.-C. Oh, K.Y. Cho, C.-H. Jung, Y. Areerob, The double perovskite structure effect of a novel La2CuNiO6-ZnSe-graphene nanocatalytic compo- site for dye sensitized solar cells as a freestanding counter electrode. Photochem. Photobiol. Sci. 18, 1389–1397 (2019)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Won-Chun Oh or Yonrapach Areerob.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, W., Areerob, Y. Modeling dye-sensitized solar cells with graphene based on nanocomposites in the Brillouin zone and density functional theory. J. Korean Ceram. Soc. (2020).

Download citation


  • Graphene
  • Dye-sensitized solar cells
  • Brillion zone
  • Density functional theory