Estimates of commutators on Herz-type spaces with variable exponent and applications


Let [bT] be the commutator generated by b and T, where \(b\in \mathrm {BMO}({\mathbb {R}}^{n})\) and T is a Calderón–Zygmund singular integral operator. In this paper, the authors establish some strong type and weak type boundedness estimates including the \(L\log L\) type inequality for [bT] on the Herz-type spaces with variable exponent. Meanwhile, the similar results for the commutators \([b,I_l]\) of fractional integral operator are also obtained. As applications, we consider the regularity in the Herz-type spaces with variable exponent of strong solutions to nondivergence elliptic equations with \(\mathrm {VMO}\) coefficients.

This is a preview of subscription content, access via your institution.


  1. 1.

    Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^{p}\) spaces. Rev. Mat. Iberoamericana 23, 743–770 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chen, Y., Levin, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chiarenza, F., Frasca, M., Longo, P.: \(W^{2, p}\) solvability of the Dirichlet problem for nondivergence elliptic equations with \(\rm VMO\) coefficients. Trans. Am. Math. Soc. 336, 841–853 (1993)

    MATH  Google Scholar 

  4. 4.

    Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis(Applied and Numerical Harmonic Analysis). Springer, Heidelberg (2013)

    Google Scholar 

  6. 6.

    Cruz-Uribe, D., Wang, L.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, vol. 2017. Springer, Heidelberg (2011)

  8. 8.

    Fan, D., Lu, S., Yang, D.: Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with \(\rm VMO\) coefficients. Georg. Math. J. 5, 425–440 (1998)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Ferreira, L., Pérez-López, J.: Besov-weak-Herz spaces and global solutions for Navier–Stokes equations. Pac. J. Math. 296, 57–77 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Harjulehto, P., Hästö, P., Lê, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Herz, C.: Lipshitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–324 (1968)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ho, K.: John–Nirenbeg inequalities on Lebesgue spaces with variable exponents. Taiwan. J. Math. 18, 1107–1118 (2014)

    Article  Google Scholar 

  13. 13.

    Hu, G., Lu, S., Yang, D.: The weak Herz spaces. J. Beij. Norm. Univ. (Nat. Sci.) 33, 27–34 (1997)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Hu, G., Lu, S., Yang, D.: The applications of weak Herz spaces. Adv. Math. (China) 26, 417–428 (1997)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36, 33–50 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. del Circolo Mate. di Palermo 59, 199–213 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938–954 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Komori, Y.: Weak type estimates for Calderón-Zygmund operators on Herz spaces at critical indexes. Math. Nachr. 259, 42–50 (2003)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu, Z.: Boundedness of commutators of fractional integration on Herz-type spaces. Acta Math. Sci. Ser. B Engl. Ed. 20, 461–470 (2000)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Liu, Z.: Boundedness of commutators of Calderón-Zygmund singular integral operators on Herz-type Hardy spaces. Adv. Math. (China) 30, 447–458 (2001)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Lu, S., Yang, D.: The local versions of \(H^p({\mathbb{R}}^{n})\) spaces at the origin. Stud. Math. 116, 103–131 (1995)

    Article  Google Scholar 

  23. 23.

    Lu, S., Yang, D.: The weighted Herz-type Hardy space and its applications. Sci. China Ser. A 38, 662–673 (1995)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–211 (1931)

    Article  Google Scholar 

  26. 26.

    Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    Google Scholar 

  27. 27.

    Sarason, D.: On functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Tsutsui, Y.: The Navier–Stokes equations and weak Herz spaces. Adv. Differ. Equ. 16, 1049–1085 (2011)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J. Math. 56, 559–573 (2016)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Wang, H.: Boundedness of commutators on Herz-type Hardy spaces with variable exponent. Jordan J. Math. Stat. 9, 17–30 (2016)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Wang, H., Liu, Z.: The Herz-type Hardy spaces with variable exponent and their applications. Taiwan. J. Math. 16, 1363–1389 (2012)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent. Ann. Funct. Anal. 11, 1108–1125 (2020)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Wang, L., Shu, L.: On multilinear commutators of Marcinkiewicz integrals in variable exponent Lebesgue and Herz type spaces. Math. Inequal. Appl. 22, 77–96 (2019)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271, 2822–2887 (2016)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Zhuo, C., Yang, D., Yuan, W.: Interpolation between \(H^{p(\cdot )}({\mathbb{R}}^{n})\) and \(L^{\infty }({\mathbb{R}}^{n})\): real method. J. Geom. Anal. 28, 2288–2311 (2018)

    MathSciNet  Article  Google Scholar 

Download references


The authors are very grateful to the referees for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant nos. 11926343, 11926342, 11761026, and 11671185), the Shandong Provincial Natural Science Foundation (Grant no. ZR2017MA041), and the Project of Shandong Province Higher Educational Science and Technology Program (Grant no. J18KA225).

Author information



Corresponding author

Correspondence to Zunwei Fu.

Additional information

Communicated by Jan van Neerven.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fu, Z. Estimates of commutators on Herz-type spaces with variable exponent and applications. Banach J. Math. Anal. 15, 36 (2021).

Download citation


  • Boundedness estimate
  • Commutator
  • Herz-type spaces
  • Variable exponent

Mathematics Subject Classification

  • 42B20
  • 42B35
  • 46E30