Abstract
We first generalize the \({\mathcal {N}}_{\psi }\) quotient modules introduced by Izuchi and Yang to the tridisc and give a characterization of the \({\mathcal {N}}_{\psi }\) quotient modules, and then construct a weighted Bergman bundle shift model introduced firstly by Douglas, Keshari, and the author for the Toeplitz operator \(T_{B}\) with a finite Blaschke product symbol B on the \({\mathcal {N}}_{\psi }\)-type quotient modules of the polydisc. Finally, the algebra of commutant of \(T_{B}\) is given in terms of the bundle, and it is shown that the Toeplitz operator is similar to copies of weighted Bergman shift which answers a generalized question of Douglas and generalizes a result of Jiang and Zheng (J Funct Anal 258(9): 2961–2982, 2010).
This is a preview of subscription content, access via your institution.
References
- 1.
Abrahamse, M.B., Douglas, R.G.: A class of subnormal operators related to multiply-connected domains. Adv. Math. 19(1), 106–148 (1976)
- 2.
Chen, L.: A dual geometric theory for bundle shifts. J. Funct. Anal. 263(4), 846–868 (2012)
- 3.
Cassier, G., Chalendar, I.: The group of the invariants of a finite Blaschke product. Complex. Var. Theory Appl. 42(3), 193–206 (2000)
- 4.
Conway, J.B.: The Theory of Subnormal Operators. American Mathematical Society, Providence (1992)
- 5.
Cowen, C.: On equivalence of Toeplitz operators. J. Oper. Theory 7(1), 167–172 (1982)
- 6.
Cowen, M.J., Douglas, R.G.: Complex geometry and operator theory. Acta Math. 141(3-4), 187–261 (1978)
- 7.
Douglas, R.G.: Operator theory and complex geometry. Extr. Math. 24(2), 135–165 (2009)
- 8.
Douglas, R.G., Keshari, D.K., Xu, A.J.: Generalized bundle shift with application to multiplication operator on the Bergman space. J. Oper. Theory 75(2), 3–19 (2016)
- 9.
Douglas, R.G., Kim, Y.: Reducing subspaces on the annulus. Integ. Equ. Oper. Theory 70(2), 1–15 (2011)
- 10.
Douglas, R.G., Putinar, M., Wang, K.: Reducing subspaces for analytic multipliers of the Bergman space. J. Funct. Anal. 263(6), 1744–1765 (2012)
- 11.
Douglas, R.G., Sun, S., Zheng, D.: Multiplication operators on the Bergman space via analytic continuation. Adv. Math. 226(1), 541–583 (2011)
- 12.
Fisher, S.D.: Function Theory on Planar Domains. A Wiley-Interscience Publication. Wiley, New York (1983)
- 13.
Gamelin, T.: Complex Analysis. Springer, New York (2001)
- 14.
Guo, K., Huang, H.: On multiplication operators on the Bergman space: similarity, unitary equivalence and reducing subspaces. J. Oper. Theory 65(2), 355–378 (2011)
- 15.
Kunyu, G., Shunhua, S., Dechao, Z., Changyong, Z.: Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. Reine Angew. Math. 628, 129–168 (2009)
- 16.
Hu, J., Sun, S., Xu, X., Yu, D.: Reducing subspace of analytic Toeplitz operators on the Bergman space. Integ. Equ. Oper. Theory 49(3), 387–395 (2004)
- 17.
Husemoller, D.: Fibre Bundle. McGraw-Hill, New York (1966)
- 18.
Izuchi, K.H., Izuchi, Y., Izuchi, K.J.: Wandering subspaces and the Beurling type theorem II. New York J. Math. 16(33), 489–505 (2010)
- 19.
Izuchi, K.J., Yang, R.: \(N_{\varphi }\) -type quotient modules on the torus. New York J. Math. 14(33), 431–457 (2008)
- 20.
Jiang, C.-l., Li, Y.-C.: The commutant and similarity invariant of analytic Toeplitz operators on Bergman space. Sci. China Ser. A: Math. 50(5), 651–664 (2008)
- 21.
Jiang, C.-l., Zheng D.: Similarity of analytic Toeplitz operators on the Bergman spaces. J. Funct. Anal. 258(9), 2961–2982 (2010)
- 22.
Kobayashi, S.: Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo (1987)
- 23.
Stephenson, K.: Analytic functions and hypergroups of function pairs. Indiana Univ. Math. J. 31(6), 843–884 (1982)
- 24.
Sun, S.: On unitary equivalence of multiplication operators on Bergman space. Northeast. Math. J. 1, 213–222 (1985)
- 25.
Sun, S., Wang, Y.: The commutants of a class of analytic Toeplitz operators on Bergman spaces. (Chinese). Acta Sci. Natur. Univ. Jilin (2), 4–8 (1997)
- 26.
Thomson, J.: The commutant of a class of analytic Toeplitz operators II. Indiana Univ. Math. J. 25(8), 793–800 (1976)
- 27.
Thomson, J.: The commutant of a class of analytic Toeplitz operators. Am. J. Math. 99, 522–529 (1977)
- 28.
Tikaradze, A.: Multiplication operators on the Bergman spaces of pseudoconvex domains. New York J. Math. 21, 1327–1345 (2015)
- 29.
Wu, Y., Xu, X.-Mi.: Reducing subspaces of Toeplitz operators on \(N_{\varphi }\)-type quotient modules on the torus (Chinese). Commun. Math. Res. 25(1), 19–29 (2009)
- 30.
Xu, A.J., Yan, C.Q.: Reducing subspace of analytic Toeplitz operators on the quotient module \(N_{\varphi }\) (Chinese). Appl. Math. J. Chin. Univ. Ser. A 24(1), 95–101 (2009)
- 31.
Zhu, K.: Reducing subspaces for a class of multiplication operators. J. Lond. Math. Soc. (2), 62(2), 553–568 (2000)
Acknowledgements
Many thanks for the referee’s important suggestions. The author was supported in part by Chongqing Science and Technology Commission (Grant Nos. cstc2018jcyjA2248 and cstc2019jcyj-msxmX0295), NSF of China (11871127), and Youth Project of Science and Technology Research Program of Chongqing Education Commission of China. (No. KJQN201801110).
Author information
Affiliations
Corresponding author
Additional information
Communicated by Kehe Zhu.
Rights and permissions
About this article
Cite this article
Xu, A. Bundle shifts and Toeplitz operators on \({\mathcal {N}}_{\psi }\)-type quotient modules of the tridisc. Ann. Funct. Anal. 12, 26 (2021). https://doi.org/10.1007/s43034-021-00114-z
Received:
Accepted:
Published:
Keywords
- Generalized bundle shift
- Toeplitz operator
- \({\mathcal {N}}_{\psi }\)-quotient module
- Polydisc
Mathematics Subject Classification
- 47B35
- 46B32
- 05A38
- 15A15