Bounds for zeros of a polynomial using numerical radius of Hilbert space operators


We obtain bounds for the numerical radius of \(2 \times 2\) operator matrices which improve on the existing bounds. We also show that the inequalities obtained here generalize the existing ones. As an application of the results obtained here, we estimate the bounds for the zeros of a monic polynomial and illustrate with numerical examples that the bounds are better than the existing ones.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abu-Omar, A., Kittaneh, F.: Generalized spectral radius and norm inequalities for Hilbert space operators, Internat. J. Math. 26(12) (2015) 1550097 9 pp

  2. 2.

    Abu-Omar, A., Kittaneh, F.: Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials. Ann. Funct. Anal. 5(1), 56–62 (2014)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Al-Dolat, M., Al-Zoubi, K., Ali, M., Bani-Ahmad, F.: General numerical radius inequalities for matrices of operators. Open Math. 14, 109–117 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Alpin, Y.A., Chien, M., Yeh, L.: The numerical radius and bounds for zeros of a polynomial. Proc. Amer. Math. Soc. 131, 725–730 (2002)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra Appl. 573, 166–177 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bag, S., Bhunia, P., Paul, K.: Bounds of numerical radius of bounded linear operator using \(t\)-Aluthge transform. Math. Inequal. Appl. 23(3), 991–1004 (2020)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bhunia, P., Paul, K., Nayak, R.K.: On inequalities for A-numerical radius of operators. Electron. J. Linear Algebra 36, 143–157 (2020)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  9. 9.

    Fujii, M., Kubo, F.: Buzano’s inequality and bounds for roots of algebraic equations. Proc. Amer. Math. Soc. 117(2), 359–361 (1993)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Hirzallah, O., Kittaneh, F., Shebrawi, K.: Numerical radius inequalities for certain \(2\times 2\) operator matrices. Integral Equ. Oper. Theory 71, 129–147 (2011)

    Article  Google Scholar 

  11. 11.

    Horn, R.A., Johnson, C.R.: Matrix Anallysis. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  12. 12.

    Klaja, H., Mashreghi, J., Ransford, T.: On mapping theorems for numerical range. Proc. Am. Math. Soc. 144, 3009–3018 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kittaneh, F.: Numerical radius inequalities for Hilbert spaces operators. Stud. Math. 168(1), 73–80 (2005)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kittaneh, F.: Bounds for the zeros of polynomials from matrix inequalities. Arch. Math. (Basel) 81(5), 601–608 (2003)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Linden, H.: Bounds for zeros of polynomials using traces and determinants. Seminarberichte Fachbereich Mathematik FeU Hagen. 69, 127–146 (2000)

    Google Scholar 

  16. 16.

    Paul, K., Bag, S.: Estimation of bounds for the zeros of a polynomial using numerical radius. Appl. Math. Comput. 222, 231–243 (2013)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Paul, K., Bag, S.: On the numerical radius of a matrix and estimation of bounds for zeros of a polynomial, Int. J. Math. Math. Sci. 2012 (2012) Article Id 129132

  18. 18.

    Shebrawi, K.: Numerical radius inequalities for certain 2\(\times 2\) operator matrices II. Linear Algebra Appl. 523, 1–12 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 178(1), 83–89 (2007)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank the referee for his/her helpful suggestions. Mr. Pintu Bhunia would like to thank UGC, Govt. of India for the financial support in the form of SRF. Prof. Kallol Paul would like to thank RUSA 2.0, Jadavpur University for the partial support.

Author information



Corresponding author

Correspondence to Kallol Paul.

Additional information

Communicated by Hugo Woerdeman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhunia, P., Bag, S. & Paul, K. Bounds for zeros of a polynomial using numerical radius of Hilbert space operators. Ann. Funct. Anal. 12, 21 (2021).

Download citation


  • Numerical radius
  • Operator matrix
  • Zeros of polynomial

Mathematics Subject Classification

  • 47A12
  • 15A60
  • 26C10