Skip to main content
Log in

Swimming Program on Mildly Diabetic Rats in Pregnancy

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 19 February 2021

This article has been updated

Abstract

The present study aims to confirm if the moderate-intensity swimming has successful glycemic control and non-toxic oxidative stress levels and to verify the influence on pancreatic adaptations, embryo implantation, and placental efficiency. Female Wistar rats were randomly distributed to obtain mildly diabetic by streptozotocin induction at birth and the non-diabetic females given vehicle. At adulthood, pregnant rats were put at random into sedentary non-diabetic rats (ND); exercise non-diabetic rats (NDEx); sedentary diabetic rats (D); and exercise diabetic rats (DEx). The rats of the groups submitted to moderate intensity carried loads equivalent to 4% of body weight. On day 17 of gestational day, all rats were submitted to oral glucose tolerance test (OGTT). Next day (GD18), the rats were anesthetized and killed to count implantation sites and to collect placentas, blood, and muscle samples for biochemical biomarkers and pancreas for immunohistochemical analysis. The moderate exercise used was not sufficient to stimulate the aerobic pathway but presented positive results on glucose metabolism, lower embryo postimplantation loss, and pancreatic morphology compared with the sedentary diabetic group. However, the DEx group showed muscular damage, decreased antioxidant defense, and lipid peroxidation. Thus, the moderate-intensity exercise reduces glycemic levels during OGTT and causes no damage to non-diabetic rats related to other analyzed parameters in this study. The exercised diabetic rats present better glycemic metabolism in OGTT, islet pancreatic morphology, and embryofetal development. However, it is necessary an adjustment in this exercise intensity to improve the effectiveness of aerobic training for reduction of maternal muscular and lipid membrane damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data supporting findings are presented within the manuscript.

Change history

References

  1. World Health Organization (WHO). Diabetes. 2018. https://www.who.int/news-room/fact-sheets/detail/diabetes.

  2. International Diabetes Federation (IDF). IDF Diabetes Atlas Ninth edition 2019. 2019. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.

  3. Bequer L, Gómez T, Molina JL, Álvarez A, Chaviano C, Clapés S. Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Syst Biol Reprod Med. 2018;64(1):60–70. https://doi.org/10.1080/19396368.2017.1395928.

    Article  CAS  PubMed  Google Scholar 

  4. Iessi I, Sinzato Y, Gallego F, Nielsen J, Damasceno D. Effect of diabetes on circulating pancreatic hormones in pregnant rats and their offspring. Horm Metab Res. 2016;48(10):682–6. https://doi.org/10.1055/s-0042-114039.

    Article  CAS  PubMed  Google Scholar 

  5. Gallego FQ, Sinzato YK, Miranda CA, Iessi IL, Dallaqua B, Volpato GT, et al. Pancreatic islet response to diabetes during pregnancy in rats. Life Sci. 2018;214:1–10. https://doi.org/10.1016/j.lfs.2018.10.046.

    Article  CAS  PubMed  Google Scholar 

  6. Gallego FQ, Miranda CA, Sinzato YK, Iessi IL, Dallaqua B, Pando RH, et al. Temporal analysis of distribution pattern of islet cells and antioxidant enzymes for diabetes onset in postnatal critical development window in rats. Life Sci. 2019;226:57–67. https://doi.org/10.1016/j.lfs.2019.03.061.

    Article  CAS  PubMed  Google Scholar 

  7. Hauschildt AT, Corá LA, Volpato GT, Sinzato YK, Damasceno DC, Américo MF. Mild diabetes: long-term effects on gastric motility evaluated in rats. Int J Exp Pathol. 2018;99(1):29–37. https://doi.org/10.1111/iep.12262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eriksson UJ. Congenital anomalies in diabetic pregnancy. Seminars in Fetal & Neonatal Medicine. 2008:1–9.

  9. Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal fetal pancreatic development. J Physiol. 2003;547:11–20. https://doi.org/10.1113/jphysiol.2002.036582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79. https://doi.org/10.2337/dc16-1728.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hopkins SA, Artal R. The role of exercise in reducing the risks of gestational diabetes mellitus women’s health 2013; 9(6):569–581. https://doi.org/10.2217/whe.13.52.

  12. Vigelsø A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int J Physiol Pathophysiol Pharmacol. 2014;6:84–101.

    PubMed  PubMed Central  Google Scholar 

  13. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–60. https://doi.org/10.1113/jphysiol.2012.230185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blomstrand E, Radegran G, Saltin B. Maximum rate of oxygen uptake by human skeletal mus- cle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol. 1997;501:455–60. https://doi.org/10.1111/j.1469-7793.1997.455bn.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Byllund AC, Bjuro T, Cederblad G, Holm J, Lundholm K, Sjostroom M, et al. Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability. Eur J Appl Physiol Occup Physiol. 1977;36:151–69. https://doi.org/10.1007/BF00421747.

    Article  Google Scholar 

  16. Halliwell B, Gutteridge JMC. Oxidative stress: adaptation, damage, repair and death. Oxford: Oxford University Press; 1998.

    Google Scholar 

  17. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363. https://doi.org/10.1155/2012/96036310.1155/2012/960363.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Close GL, Kayani A, Vasilaki A, McArdle A. Skeletal muscle damage with exercise and aging. Sports Med. 2005;35(5):413–27. https://doi.org/10.2165/00007256-200535050-00004.

    Article  PubMed  Google Scholar 

  19. Lopez-Soldado I, Herrera E. Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring. Exp Diabesity Res. 2003;4:107–18. https://doi.org/10.1155/EDR.2003.107.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leandro CG, Fidalgo M, Bento-Santos A, Falcão-Tebas F, Vasconcelos D, Castro RM, et al. Maternal moderate physical training during pregnancy attenuates the effects of a low-protein diet on the impaired secretion of insulin in rats: potential role for compensation of insulin resistance and preventing gestational diabetes mellitus. J Biomed Biotechnol. 2012;2012:1–7. https://doi.org/10.1155/2012/805418.

    Article  CAS  Google Scholar 

  21. Lazo-Osório RA, Pereira R, Christofani JS, Russo AK, Machado M, Ribeiro W, et al. Effect of physical training on metabolic responses of pregnant rats submitted to swimming under termal stress. J Res Med Sci. 2009;14(4):223–30.

    PubMed  PubMed Central  Google Scholar 

  22. Volpato GT, Damasceno DC, Campos KE, Rocha R, Rudge MVC, Calderon IMP. Avaliação do efeito do exercício físico no metabolismo de ratas diabéticas prenhes. Rev Bras Med Esporte. 2006;12(5):229–33. https://doi.org/10.1590/S1517-86922006000500001.

    Article  Google Scholar 

  23. Volpato GT, Damasceno DC, Kempinas WG, Rudge MV, Calderon IM. Effect of exercise on the reproductive outcome and fetal development of diabetic rats. Reprod BioMed Online. 2009;19(6):852–8. https://doi.org/10.1016/j.rbmo.2009.09.027.

    Article  CAS  PubMed  Google Scholar 

  24. Damasceno DC, Silva HP, Vaz GF, Vasques-Silva FA, Calderon IMP, Rudge MVC, et al. Diabetic rats exercise prior to and during pregnancy: maternal reproductive outcome, biochemical profile, and frequency of fetal anomalies. Reprod Sci. 2013;20(7):730–8. https://doi.org/10.1177/1933719112461186.

    Article  PubMed  Google Scholar 

  25. Volpato GT, Damasceno DC, Sinzato YK, Ribeiro VM, Rudge MVC, Calderon IMP. Oxidative stress status and placental implications in diabetic rats undergoing swimming exercise after embryonic implantation. Reprod Sci. 2015;22(5):602–8. https://doi.org/10.1177/1933719114556485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Netto AO, Gelaleti RB, Corvino SB, Serrano RG, Hernándezb SC, Volpato GT, et al. Small-for-pregnancy-age rats submitted to exercise: DNA damage in mothers and newborns, measured by the comet assay. Mutat Res Gen Tox En. 2018;835:11–5. https://doi.org/10.1016/j.mrgentox.2018.08.006.

    Article  CAS  Google Scholar 

  27. Corvino SB, Damasceno DC, Sinzato YK, Netto AO, Macedo NCD, Zambrano E, et al. Comparative analysis of two different models of swimming applied to pregnant rats born small for pregnant age. An Acad Bras Cienc. 2017;89(1):223–30. https://doi.org/10.1590/0001-3765201720160285.

    Article  CAS  PubMed  Google Scholar 

  28. Netto AO, Macedo NCD, Gallego FQ, Sinzato YK, Volpato GT, Damasceno DC. Evaluation of anaerobic threshold in non-pregnant and pregnant rats. An Acad Bras Cienc. 2017;89(4):2749–56. https://doi.org/10.1590/0001-3765201720170199.

    Article  CAS  PubMed  Google Scholar 

  29. Netto AO, Macedo NCD, Gallego FQ, Sinzato YK, Volpato GT, Zambrano E, et al. Impact of different exercise intensities on pregnant rats and on their offspring. An Acad Bras Cienc. 2020;92(4) (in press).

  30. Sinzato YK, Damasceno DC, Laufer-Amorim R, Rodrigues MM, Oshiiwa M, Taylor KN, et al. Plasma concentrations and placental immunostaining of interleukin-10 and tumor necrosis factor-α as predictors of alterations in the embryo-fetal organism and the placental development of diabetic rats. Braz J Med Biol Res. 2011;44:206–11. https://doi.org/10.1590/s0100-879x2011007500015.

    Article  CAS  PubMed  Google Scholar 

  31. Sinzato YK, Volpato GT, Iessi IL, Bueno A, Calderon IMP, Rudge MV, et al. Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters. Exp Diabetes Res. 2012;2012:1–7. https://doi.org/10.1155/2012/108163.

    Article  Google Scholar 

  32. Tai MM. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care. 1994;17:152–4. https://doi.org/10.2337/diacare.17.2.152.

    Article  CAS  PubMed  Google Scholar 

  33. Soares TS, Andreolla AP, Miranda CA, Klöppel E, Rodrigues LS, Moraes- Souza RQ, et al. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Syst Biol Reprod Med 2018; 64:51–59. https://doi.org/10.1080/19396368.2017.1410866.

  34. de Souza MSS, Sinzato YK, Lima PHO, Calderon IMP, Damasceno DC. Oxidative stress status and lipid profiles of diabetic pregnant rats exposed to cigarette smoke. Reprod BioMed Online. 2010;20(4):547–52. https://doi.org/10.1016/j.rbmo.2010.01.002.

    Article  CAS  Google Scholar 

  35. Alp PR, Newsholme EA, Zammit VA. Activities of citrate synthase and NAD+ linked and NADP+ linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976;154:689–700. https://doi.org/10.1042/bj1540689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hayward CE, Lean S, Sibley CP, Jones RL, Wareing M, Greenwood SL, et al. Placental adaptation: what can we learn from birth weight: placental weight ratio? Front Physiol. 2016;7:28. https://doi.org/10.3389/fphys.2016.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Damasceno DC, Kempinas WDG, Volpato GT, Consonni M, Rudge MVC, Paumgartten FJR. Anomalias congênitas - estudos experimetais. Editora Médica: Botucatu; 2008.

    Google Scholar 

  38. Nascimento SL, Surita FG, Cecatti JG. Physical exercise during pregnancy: a systematic review. Curr Opin Obstet Gynecol. 2012;24(6):387–94. https://doi.org/10.1097/GCO.0b013e328359f131.

    Article  PubMed  Google Scholar 

  39. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50. https://doi.org/10.1056/NEJM200105033441801.

    Article  CAS  PubMed  Google Scholar 

  40. Kim HJ, Park JY, Oh SL, Kim YA, So B, Seong JK, et al. Effect of treadmill exercise on interleukin-15 expression and glucose tolerance in zucker diabetic fatty rats. Diabetes Metab J. 2013;37:358–64. https://doi.org/10.4093/dmj.2013.37.5.358.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mota CSA, Ribeiro C, Araújo GG, de Araújo MB, Manchado-Gobatto FB, Voltarelli FA, et al. Exercise training in the aerobic/anaerobic metabolic transition prevents glucose intolerance in alloxan- treated rats. BMC Endocr Disord. 2008;8:11. https://doi.org/10.1186/1472-6823-8-11.

    Article  CAS  Google Scholar 

  42. Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetology. 2010;53:2167–76. https://doi.org/10.1007/s00125-010-1809-6.

    Article  CAS  Google Scholar 

  43. Rawal S, Huang HH, Novikova L, Hamedi T, Smirnova IV, Stehno-Bittel L. Effect of exercise on pancreatic islets in Zucker diabetic fatty rats. J Diabetes Metab. 2013;10:1–7. https://doi.org/10.4172/2155-6156.

    Article  Google Scholar 

  44. Park S, Hong SM, Sung SR. Exendin-4 and exercise promotes β-cell function and mass through IRS2 induction in islets of diabetic rats. Life Sci. 2008;82:503–11. https://doi.org/10.1016/j.lfs.2007.

    Article  CAS  PubMed  Google Scholar 

  45. Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med. 2019;8(9):1385. https://doi.org/10.3390/jcm8091385.

    Article  CAS  PubMed Central  Google Scholar 

  46. Wang J, Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxidative Med Cell Longev. 2017;2017:1–9. https://doi.org/10.1155/2017/1930261.

    Article  CAS  Google Scholar 

  47. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7–8):916–22. https://doi.org/10.1016/j.nut.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  48. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–76. https://doi.org/10.1152/physrev.00031.2007.

    Article  CAS  PubMed  Google Scholar 

  49. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, ozone on pulmonary function and lipid peroxidation. J Appl Physiol. 1978;45:927–32. https://doi.org/10.1152/jappl.1978.45.6.927.

    Article  CAS  PubMed  Google Scholar 

  50. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–205. https://doi.org/10.1016/s0006-291x(82)80124-1.

    Article  CAS  PubMed  Google Scholar 

  51. Duthie GG, Robertson JD, Maughan RJ, Morrice PC. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys. 1990;282:78–83. https://doi.org/10.1016/0003-9861(90)90089-h.

    Article  CAS  PubMed  Google Scholar 

  52. de Oliveira DM, Dourado GKZS, Cesar TB. Hesperidin associated with continuous and interval swimming improved biochemical and oxidative biomarkers in rats. J Int Soc Sports Nutr. 2013;10(27):1–7. https://doi.org/10.1186/1550-2783-10-27.

    Article  CAS  Google Scholar 

  53. Levay EA, Govic A, Hazi A, Flannery G, Christianson J, Drugan RC, et al. Endocrine and immunological correlates of behaviorally identified swim stress resilient and vulnerable rats. Brain Behav Immun. 2006;20(5):488–97. https://doi.org/10.1016/j.bbi.2005.10.004.

    Article  CAS  PubMed  Google Scholar 

  54. Ferry A, Picard F, Duvallet A, Weill B, Rieu M. Changes in blood leukocyte populations induced by acute maximal and chronic submaximal exercise. Eur J Appl Physiol. 1990;59(6):435–42. https://doi.org/10.1007/BF02388625.

    Article  CAS  Google Scholar 

  55. Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: Immune function and exercise. Exer Immunol Rev. 2011;17:6–63.

    Google Scholar 

  56. Sachdev S, Davies KJ. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. 2008;44(2):215–23. https://doi.org/10.1016/j.freeradbiomed.2007.07.019.

    Article  CAS  PubMed  Google Scholar 

  57. Perales M, Valenzuela PL, Barakat R, Cordero Y, Peláez M, López C, et al. Gestational exercise and maternal and child health: effects until delivery and at post-natal follow-up. J Clin Med. 2020;9(2):E379. https://doi.org/10.3390/jcm9020379.

    Article  CAS  PubMed  Google Scholar 

  58. Adesegun D, Cai C, Sivak A, Chari R, Davenport MH. Prenatal exercise and pre-gestational diseases: a systematic review and meta-analysis. J Obst Gynaecol Can. 2019;41(8):1134–43. https://doi.org/10.1016/j.jogc.2018.10.007.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the staff of the Laboratory for Experimental Research in Gynecology and Obstetrics, especially to Talisia Moreto, Carlos Roberto Lima, Vitor Souza, and Danilo Chaguri for the excellent technical assistance. They are also grateful to Dr. Carlos Eduardo Meirelles for providing us the structure of the swimming tanks and for making of the anesthesia machine, and to the Dr. José Eduardo Corrente for assistance with statistical analysis.

Funding

This study was supported by grants from FAPESP/Brazil in most of the study at Nathália C. D. Macedo, as part of her thesis (Fellowship-Process Number 2013/23478-3).

Author information

Authors and Affiliations

Authors

Contributions

NCDM, GTV, and DCD conceived and designed the experiments. NCDM, FQG, and AON collected the experimental data. NCDM, ILI, FQG, and DCD analyzed and interpreted data. ILI, FQG, YKS, GTV, EZ, and DCD drafted the article and revised it critically for important intellectual content. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Débora C. Damasceno.

Ethics declarations

Conflict of Interests

The authors confirm that they have no conflict of interest.

Code Availability (Software Application or Custom Code)

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was updated to correct the affiliation numbers in the author display.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, N.C.D., Iessi, I.L., Gallego, F.Q. et al. Swimming Program on Mildly Diabetic Rats in Pregnancy. Reprod. Sci. 28, 2223–2235 (2021). https://doi.org/10.1007/s43032-021-00462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00462-0

Keywords

Navigation