Maternal DNA Methylation During Pregnancy: a Review

Abstract

Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121:267–373.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Carmichael SL, Yang W, Shaw GM, others. Maternal dietary nutrient intake and risk of preterm delivery. Am J Perinatol. 2013;30:579–88.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch Gen Psychiatry. 1992;49:983–8.

    CAS  Article  Google Scholar 

  6. 6.

    Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. Int J Cancer. 2006;119:2007–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Stuebe AM, Forman MR, Michels KB. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. Int J Obes. 2009;33:743–52.

    CAS  Article  Google Scholar 

  8. 8.

    Johnson MP, Brennecke SP, East CE, et al. Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta b gene. PLoS One. 2012;7:e33666.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Hong X, Hao K, Ji H, Peng S, Sherwood B, di Narzo A, et al. Genome-wide approach identifies a novel gene-maternal pre-pregnancy bmi interaction on preterm birth. Nat Commun. 2017;8:15608.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Rappoport N, Toung J, Hadley D, Wong RJ, Fujioka K, Reuter J, et al. A genome-wide association study identifies only two ancestry specific variants associated with spontaneous preterm birth. Sci Rep. 2018;8:226.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Zhang YP, Liu XH, Gao SH, Wang JM, Gu YS, Zhang JY, et al. Risk factors for preterm birth in five maternal and child health hospitals in Beijing. PLoS One. 2012;7:e52780.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Nieuwenhuijsen MJ, Dadvand P, Grellier J, Martinez D, Vrijheid M. Environmental risk factors of pregnancy outcomes: a summary of recent meta-analyses of epidemiological studies. Environ Health. 2013;12:6.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Rogac M, Peterlin B. Epigenetic signature of chronic maternal stress load during pregnancy might be a potential biomarker for spontaneous preterm birth. Balkan J Med Genet. 2018;21:27–33.

    PubMed Central  Article  Google Scholar 

  14. 14.

    Hoyo C, Murphy SK, Jirtle RL (2009) Imprint regulatory elements as epigenetic biosensors of exposure in epidemiological studies.

  15. 15.

    Relton CL, Smith GD. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med. 2010;7:e1000356.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23:297–307.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Groom A, Elliott H, Embleton N, Relton C. Epigenetics and child health: basic principles. Arch Dis Child. 2011;96:863–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Cao-Lei L, Dancause KN, Elgbeili G, Laplante DP, Szyf M, King S. DNA methylation mediates the effect of maternal cognitive appraisal of a disaster in pregnancy on the child’s c-peptide secretion in adolescence: Project Ice Storm. PLoS One. 2018;13:e0192199.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Suter MA, Aagaard-Tillery KM. Environmental influences on epigenetic profiles. Semin Reprod Med. 2009;27:380–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Feinberg AP. Epigenetics at the epicenter of modern medicine. Jama. 2008;299:1345–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24:3135–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49:e322.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J Exp Zool B Mol Dev Evol. 2014;322:208–20.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet. 2008;17:R156–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Maher B. Personal genomes: the case of the missing heritability. Nature News. 2008;456:18–21.

    CAS  Article  Google Scholar 

  26. 26.

    Huh SJ, Clement K, Jee D, Merlini A, Choudhury S, Maruyama R, et al. Age-and pregnancy-associated dna methylation changes in mammary epithelial cells. Stem cell reports. 2015;4:297–311.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Lumey L, Stein AD, Kahn HS, Van der Pal-de Bruin KM, Blauw G, Zybert PA, et al. Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol. 2007;36:1196–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci. 2008;105:17046–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Smith F, Garfield A, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenetic and genome research. 2006;113:279–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    (2020) DNA methylation, an epigenetic mode of gene expression regulation in reproductive science. Harvard Catalyst Profiles Harvard Catalyst.

  32. 32.

    Bischof P. Trophoblast differentiation and invasion: its significance for human embryo implantation. Early Pregnancy. 1997;3:81.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kim S-M, Kim J-S. A review of mechanisms of implantation. Development & reproduction. 2017;21:351–9.

    Article  Google Scholar 

  34. 34.

    Müller HM, Ivarsson L, Schröcksnadel H, et al. DNA methylation changes in sera of women in early pregnancy are similar to those in advanced breast cancer patients. Clin Chem. 2004;50:1065–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. 35.

    De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. 36.

    Xiao F-H, Wang H-T, Kong Q-P (2019) Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Frontiers in genetics 10:

  37. 37.

    Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387–411.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Svensson-Arvelund J, Ernerudh J, Buse E, Cline JM, Haeger J-D, Dixon D, Markert UR, Pfarrer C, Vos PD, Faas MM (2014) The placenta in toxicology. Part ii: systemic and local immune adaptations in pregnancy. Toxicologic pathology 42:327–338.

  40. 40.

    Romero R. Novel aspects of neutrophil biology in human pregnancy. Am J Reprod Immunol. 2005;53:275.

    Google Scholar 

  41. 41.

    Petrušić V, Živković I, Muhandes L, Dimitrijević R, Stojanović M, Dimitrijević L. Infection-induced autoantibodies and pregnancy related pathology: an animal model. Reprod Fertil Dev. 2014;26:578–86.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Veenstra van Nieuwenhoven A, Heineman M, Faas M. The immunology of successful pregnancy. Hum Reprod Update. 2003;9:347–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    White WM, Brost BC, Sun Z, Rose C, Craici I, Wagner SJ, et al. Normal early pregnancy: a transient state of epigenetic change favoring hypomethylation. Epigenetics. 2012;7:729–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Herrmann-Lavoie C, Rao C, Akoum A. Chorionic gonadotropin down-regulates the expression of the decoy inhibitory interleukin 1 receptor type ii in human endometrial epithelial cells. Endocrinology. 2007;148:5377–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Kuhajda FP, Piantadosi S, Pasternack GR. Haptoglobin-related protein (hpr) epitopes in breast cancer as a predictor of recurrence of the disease. N Engl J Med. 1989;321:636–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Hoffman L, Winfrey V, Blaeuer G, Olson G. A haptoglobin-like glycoprotein is produced by implantation-stage rabbit endometrium. Biol Reprod. 1996;55:176–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Wongpaiboonwattana W, Tosukhowong P, Dissayabutra T, Mutirangura A, Boonla C. Oxidative stress induces hypomethylation of line-1 and hypermethylation of the runx3 promoter in a bladder cancer cell line. Asian Pac J Cancer Prev. 2013;14:3773–8.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Burris HH, Rifas-Shiman SL, Baccarelli A, Tarantini L, Boeke CE, Kleinman K, et al. Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J Dev Orig Health Dis. 2012;3:173–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Gruzieva O, Merid SK, Chen S, et al. DnA methylation trajectories during pregnancy. Epigenetics insights. 2019;12:2516865719867090.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Poon LL, Leung TN, Lau TK, Chow KC, Lo YD. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem. 2002;48:35–41.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN, Chan LY, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci. 2005;102:14753–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Chiu RW, Chim SS, Wong IH, et al. Hypermethylation of rassf1a in human and rhesus placentas. Am J Pathol. 2007;170:941–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Ramo-Fernández L, Boeck C, Koenig AM, Schury K, Binder EB, Gündel H, et al. The effects of childhood maltreatment on epigenetic regulation of stress-response associated genes: an intergenerational approach. Sci Rep. 2019;9:1–12.

    Article  CAS  Google Scholar 

  54. 54.

    Bellido ML, Radpour R, Lapaire O, Bie ID, Hösli I, Bitzer J, et al. MALDI-tof mass array analysis of rassf1a and serpinb5 methylation patterns in human placenta and plasma. Biol Reprod. 2010;82:745–50.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30:79–84.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Zhao A, Cheng Y, Li X, Li Q, Wang L, Xu J, et al. Zhao X. Mol Hum Reprod. 2010;17:199–206.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18:3769–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Bouchard L, Thibault S, Guay S-P, Santure M, Monpetit A, St-Pierre J, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33:2436–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep. 2017;7:115–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Masuyama H, Hiramatsu Y. Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor. J Mol Endocrinol. 2011;47:229–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    de Barros MC, Lopes MA, Francisco RP, Sapienza AD, Zugaib M. Resistance exercise and glycemic control in women with gestational diabetes mellitus. Am J Obstet Gynecol. 2010;203:556–e1.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Marion D (2008) Screening and diagnosis of gestational diabetes mellitus. UpToDate web site.

    Google Scholar 

  63. 63.

    Weng X, Liu F, Zhang H, Kan M, Wang T, Dong M, et al. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Res Clin Pract. 2018;142:10–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Enquobahrie DA, Moore A, Muhie S, Tadesse MG, Lin S, Williams MA. Early pregnancy maternal blood DNA methylation in repeat pregnancies and change in gestational diabetes mellitus status—a pilot study. Reprod Sci. 2015;22:904–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Loeffen J, Smeets R, Smeitink J, Triepels R, Sengers R, Trijbels F, et al. The human NADH: ubiquinone oxidoreductase ndufs5 (15kDa) subunit: CDNA cloning, chromosomal localization, tissue distribution and the absence of mutations in isolated complex i-deficient patients. J Inherit Metab Dis. 1999;22:19–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Patti M-E, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010;31:364–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Qiu C, Enquobahrie DA, Frederick IO, Sorensen TK, Fernandez MAL, David RM, et al. Early pregnancy urinary biomarkers of fatty acid and carbohydrate metabolism in pregnancies complicated by gestational diabetes. Diabetes Res Clin Pract. 2014;104:393–400.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Kang J, Lee C-N, Li H-Y, Hsu K-H, Lin S-Y. Genome-wide DNA methylation variation in maternal and cord blood of gestational diabetes population. Diabetes Res Clin Pract. 2017;132:127–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71:1256S–61S.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Milano W, De Rosa M, Milano L, Capasso A. Antipsychotic drugs opposite to metabolic risk: neurotransmitters, neurohormonal and pharmacogenetic mechanisms underlying with weight gain and metabolic syndrome. The open neurology journal. 2013;7:23–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Wendland EM, Torloni MR, Falavigna M, Trujillo J, Dode MA, Campos MA, et al. Gestational diabetes and pregnancy outcomes–a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth. 2012;12:23.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Ruchat S-M, Houde A-A, Voisin G, St-Pierre J, Perron P, Baillargeon J-P, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics. 2013;8:935–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet. 2015;24:3021–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard F, Arsanto J-P, Chauvin J-P, et al. Hook2 is involved in the morphogenesis of the primary cilium. Mol Biol Cell. 2011;22:4549–62.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Haeseleer F, Jang G-F, Imanishi Y, Driessen CA, Matsumura M, Nelson PS, et al. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem. 2002;277:45537–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Wu P, Farrell WE, Haworth KE, Emes RD, Kitchen MO, Glossop JR, et al. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies. Epigenetics. 2018;13:122–8.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    De Benoist B, Cogswell M, Egli I, McLean E (2008) Worldwide prevalence of anaemia 1993-2005; who global database of anaemia.

  78. 78.

    Greenberg JA, Bell SJ, Guan Y, Yu Y-h. Folic acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol. 2011;4:52.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Pritchard JA, Adams RH. Erythrocyte production and destruction during pregnancy. American Journal of Obstetrics & Gynecology. 1960;79:750–7.

    CAS  Article  Google Scholar 

  80. 80.

    Sharma JB, Shankar M. Anemia in pregnancy. JIMSA. 2010;23:253–60.

    Google Scholar 

  81. 81.

    Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006;83:993–1016.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Joubert BR, Herman T, Felix JF, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7:10577.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Knight AK, Park HJ, Hausman DB, Fleming JM, Bland VL, Rosa G, et al. Association between one-carbon metabolism indices and DNA methylation status in maternal and cord blood. Sci Rep. 2018;8:16873.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller A-B, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10:S2.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goals. Lancet. 2016;388:3027–35.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Menon R. Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand. 2008;87:590–600.

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Frey HA, Stout MJ, Pearson LN, Tuuli MG, Cahill AG, Strauss JF III, et al. Genetic variation associated with preterm birth in African-American women. Am J Obstet Gynecol. 2016;215:235–e1.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Menon R, Fortunato SJ, Velez Edwards DR, Williams SM. Association of genetic variants, ethnicity and preterm birth with amniotic fluid cytokine concentrations. Ann Hum Genet. 2010;74:165–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377:1156–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Hong X, Sherwood B, Ladd-Acosta C, Peng S, Ji H, Hao K, et al. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples. Epigenetics. 2018;13:163–72.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Chen Q, Coffey A, Bourgoin SG, Gadina M. Cytohesin binder and regulator augments t cell receptor-induced nuclear factor of activated t cells ap-1 activation through regulation of the jnk pathway. J Biol Chem. 2006;281:19985–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    O’Brien M, Morrison JJ, Smith TJ. Upregulation of pscdbp, tlr2, twist1, flj35382, ednrb, and rgs12 gene expression in human myometrium at labor. Reprod Sci. 2008;15:382–93.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  93. 93.

    Kropf P, Baud D, Marshall SE, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol. 2007;37:935–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Jeanty C, Derderian SC, Mackenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Curr Opin Pediatr. 2014;26:377–82.

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Consortium F, II Team RGERGPI &, others (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563, 573.

  97. 97.

    Chen SJ, Liu YL, Sytwu HK. Immunologic regulation in pregnancy: from mechanism to therapeutic strategy for immunomodulation. Clin Dev Immunol. 2012;2012:258391.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Parets SE, Conneely KN, Kilaru V, Menon R, Smith AK. DNA methylation provides insight into intergenerational risk for preterm birth in African Americans. Epigenetics. 2015;10:784–92.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Foster HA, Davies J, Pink RC, Turkcigdem S, Goumenou A, Carter DR, et al. The human myometrium differentially expresses mTOR signalling components before and during pregnancy: evidence for regulation by progesterone. J Steroid Biochem Mol Biol. 2014;139:166–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Laplante M, Sabatini DM. MTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Jaffer S, Shynlova O, Lye S. Mammalian target of rapamycin is activated in association with myometrial proliferation during pregnancy. Endocrinology. 2009;150:4672–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, et al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 2014;15:R73.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Fujimoto T, Parry S, Urbanek M, Sammel M, Macones G, Kuivaniemi H, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 (MMP-1) promoter influences amnion cell MMP-1 expression and risk for preterm premature rupture of the fetal membranes. J Biol Chem. 2002;277:6296–302.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Wang H, Ogawa M, Wood JR, Bartolomei MS, Sammel MD, Kusanovic JP, et al. Genetic and epigenetic mechanisms combine to control mmp1 expression and its association with preterm premature rupture of membranes. Hum Mol Genet. 2008;17:1087–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Moutquin J-M. Classification and heterogeneity of preterm birth. BJOG Int J Obstet Gynaecol. 2003;110:30–3.

    Article  Google Scholar 

  106. 106.

    Knijnenburg TA, Vockley JG, Chambwe N, Gibbs DL, Humphries C, Huddleston KC, et al. Genomic and molecular characterization of preterm birth. Proc Natl Acad Sci. 2019;116:5819–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, et al. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology. 2007;148:1059–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Denis M, Enquobahrie DA, Tadesse MG, Gelaye B, Sanchez SE, Salazar M, et al. Placental genome and maternal-placental genetic interactions: a genome-wide and candidate gene association study of placental abruption. PLoS One. 2014;9:e116346.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, et al. Inducible gene knockout of transcription factor recombination signal binding protein-j reveals its essential role in t versus b lineage decision. Int Immunol. 2002;14:637–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Cunningham FG, Leveno K, Bloom S, Hauth J, Gilstrap L, Wenstrom K (2005) Gestational trophoblastic disease. Williams Obstetrics. 22nd ed. New York: McGraw Hill.

  111. 111.

    Small MJ, Kershaw T, Frederic R, Blanc C, Neale D, Copel J, et al. Characteristics of preeclampsia-and eclampsia-related maternal death in rural Haiti. J Matern Fetal Neonatal Med. 2005;18:343–8.

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Manandhar T, Prashad B, Nath Pal M. Risk factors for intrauterine growth restriction and its neonatal outcome. Gynecol Obstet. 2018;8:2161–0932.

    Article  Google Scholar 

  113. 113.

    Walsh SW. Obesity: a risk factor for preeclampsia. Trends in Endocrinology & Metabolism. 2007;18:365–70.

    CAS  Article  Google Scholar 

  114. 114.

    Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11:342–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Hing B, Braun P, Cordner ZA, Ewald ER, Moody L, McKane M, et al. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics. 2018;13:627–41.

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    He F, Berg A, Kawasawa YI, Bixler EO, Fernandez-Mendoza J, Whitsel EA, et al. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep. 2019;9:2079.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Wilson SL, Leavey K, Cox B, Robinson WP. The value of DNA methylation profiling in characterizing preeclampsia and intrauterine growth restriction. BioRxiv. 2017;151290.

  118. 118.

    Leavey K, Wilson SL, Bainbridge SA, Robinson WP, Cox BJ. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenetics. 2018;10:28.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Wilson SL, Leavey K, Cox BJ, Robinson WP. Mining DNA methylation alterations towards a classification of placental pathologies. Hum Mol Genet. 2018;27:135–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Tsui DW, Chan KA, Chim SS, L-w C, T-y L, T-k L, et al. Quantitative aberrations of hypermethylated rassf1a gene sequences in maternal plasma in pre-eclampsia. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis. 2007;27:1212–8.

    CAS  Article  Google Scholar 

  121. 121.

    Bianchi DW (2004) Circulating fetal DNA: its origin and diagnostic potential-a review. Placenta 25 Suppl A:S93–S101.

  122. 122.

    Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin Exp Immunol. 1984;56:185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    TSUMITA T, IWANAGA M. Fate of injected deoxyribonucleic acid in mice. Nature. 1963;198:1088–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23:73–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Chiu RW, Chim SS, Wong IH, et al. Hypermethylation of RASSF1A in human and rhesus placentas. Am J Pathol. 2007;170:941–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Lee SB, Wong AP, Kanasaki K, Xu Y, Shenoy VK, McElrath TF, et al. Preeclampsia: 2-methoxyestradiol induces cytotrophoblast invasion and vascular development specifically under hypoxic conditions. Am J Pathol. 2010;176:710–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Mousa AA, Archer KJ, Cappello R, Estrada-Gutierrez G, Isaacs CR, Strauss JF III, et al. DNA methylation is altered in maternal blood vessels of women with preeclampsia. Reprod Sci. 2012;19:1332–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediat Cell Signal. 1995;12:243–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Walsh SW. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1985;152:335–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Chavarrı́a ME, Lara-González L, González-Gleason A, Garcı́a-Paleta Y, Vital-Reyes VS, Reyes A (2003) Prostacyclin/thromboxane early changes in pregnancies that are complicated by preeclampsia. Am J Obstet Gynecol 188:986–992.

  131. 131.

    Anderson CM, Ralph JL, Wright ML, Linggi B, Ohm JE. DNA methylation as a biomarker for preeclampsia. Biological research for nursing. 2014;16:409–20.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Schulz LC, Widmaier EP, Qiu J, Roberts RM. Effect of leptin on mouse trophoblast giant cells. Biol Reprod. 2009;80:415–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Liu AX, Jin F, Zhang WW, Zhou TH, Zhou CY, Yao WM, et al. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75:414–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Abumaree MH, Chamley LW, Badri M, El-Muzaini MF. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol. 2012;94:131–41.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Liu B, Xu Y, Voss C, Qiu FH, Zhao MZ, Liu YD, et al. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways. PLoS One. 2012;7:e44701.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Sharma D, Shastri S, Sharma P (2016) Intrauterine growth restriction: antenatal and postnatal aspects. Clinical Medicine Insights: Pediatrics 10:CMPed–S40070.

  137. 137.

    Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.

    PubMed  Article  Google Scholar 

  138. 138.

    Koh W, Pan W, Gawad C, Fan HC, Kerchner GA, Wyss-Coray T, et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci U S A. 2014;111:7361–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC bioinformatics. 2012;13:86.

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Rahmani E, Schweiger R, Shenhav L, Wingert T, Hofer I, Gabel E, et al. BayesCCE: a Bayesian framework for estimating cell-type composition from dna methylation without the need for methylation reference. Genome Biol. 2018;19:1–18.

    Article  CAS  Google Scholar 

  141. 141.

    Li Z, Wu H. TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis. Genome Biol. 2019;20:190.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Michalczyk AA, Janus ED, Judge A, Ebeling PR, Best JD, Ackland MJ, et al. Transient epigenomic changes during pregnancy and early postpartum in women with and without type 2 diabetes. Epigenomics. 2018;10:419.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Moen G-H, Sommer C, Prasad RB, Sletner L, Groop L, Qvigstad E, et al. MECHANISMS IN ENDOCRINOLOGY: epigenetic modifications and gestational diabetes: a systematic review of published literature. Eur J Endocrinol. 2017;176:R247–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Jia N, Li J. Noncoding RNAs in unexplained recurrent spontaneous abortions and their diagnostic potential. Dis Markers. 2019. https://doi.org/10.1155/2019/7090767.

  145. 145.

    Wang G, Divall S, Radovick S, Paige D, Ning Y, Chen Z, et al. Preterm birth and random plasma insulin levels at birth and in early childhood. Jama. 2014;311:587–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Parets SE, Knight AK, Smith AK. Insights into genetic susceptibility in the etiology of spontaneous preterm birth. Appl Clin Genet. 2015;8:283.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Bhatnagar S, Majumder PP, Salunke DM. A pregnancy cohort to study multidimensional correlates of preterm birth in India: study design, implementation, and baseline characteristics of the participants. Am J Epidemiol. 2019;188:621–31.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Professor Partha Pratim Majumder for his mentorship, advice and suggestions.

Funding

JD is supported by the Research Fellowship (NET) of the University Grants Commission (UGC), India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arindam Maitra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Consents

This is a review article and does not involve collection of human biospecimens or analysis. The review is based on published information. Hence no ethical consent is required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, J., Maitra, A. Maternal DNA Methylation During Pregnancy: a Review. Reprod. Sci. (2021). https://doi.org/10.1007/s43032-020-00456-4

Download citation

Keywords

  • Maternal
  • DNA methylation
  • Pregnancy
  • Pregnancy-related anemia
  • Gestational diabetes
  • Preterm birth
  • Preeclampsia