Placental Production of Eicosanoids and Sphingolipids in Women Who Developed Preeclampsia on Low-Dose Aspirin

Abstract

Low-dose aspirin, which selectively inhibits thromboxane synthesis, is now standard of care for the prevention of preeclampsia in at risk women, but some women still develop preeclampsia despite an aspirin regimen. To explore the “aspirin failures,” we undertook a comprehensive evaluation of placental lipids to determine if abnormalities in non-aspirin sensitive lipids might help explain why some women on low-dose aspirin develop preeclampsia. We studied placentas from women with normal pregnancies and women with preeclampsia. Placental villous explants were cultured and media analyzed by mass spectrometry for aspirin-sensitive and non-aspirin-sensitive lipids. In women who developed severe preeclampsia and delivered preterm, there were significant elevations in non-aspirin-sensitive lipids with biologic actions that could cause preeclampsia. There were significant increases in 15- and 20-hydroxyeicosatetraenoic acids and sphingolipids: d-e-C18:0 ceramide, d-e-C18:0 sphingomyelin, d-e-sphingosine-1-phosphate, and d-e-sphinganine-1-phosphate. With regard to lipids sensitive to aspirin, there was no difference in placental production of thromboxane or prostacyclin, but prostaglandins were lower. There was no difference for isoprostanes, but surprisingly, anti-inflammatory omega 3 and 6 PUFAs were increased. In total, 10 of 30 eicosanoids and 5 of 42 sphingolipids were abnormal in women with severe early onset preeclampsia. Lipid changes in women with mild preeclampsia who delivered at term were of lesser magnitude with few significant differences. The placenta produces many aspirin-sensitive and non-aspirin-sensitive lipids. Abnormalities in eicosanoids and sphingolipids not sensitive to aspirin might explain why some aspirin-treated women develop preeclampsia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Wallenburg HCS, Makovitz JW, Dekker GA, Rotmans P. Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae. Lancet. 1986;1(8471):1–3.

    CAS  PubMed  Google Scholar 

  2. 2.

    Walsh SW. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1985;152(3):335–40.

    CAS  PubMed  Google Scholar 

  3. 3.

    Bunting S, Moncada S, Vane JR. The prostacyclin--thromboxane A2 balance: pathophysiological and therapeutic implications. Br Med Bull. 1983;39(3):271–6.

    CAS  PubMed  Google Scholar 

  4. 4.

    Lewis HD Jr, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty JE 3rd, et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a veterans administration cooperative study. N Engl J Med. 1983;309(7):396–403. https://doi.org/10.1056/nejm198308183090703.

    PubMed  Google Scholar 

  5. 5.

    Marcus AJ. Aspirin as an antithrombotic medication. N Engl J Med. 1983;309(24):1515–7. https://doi.org/10.1056/nejm198312153092410.

    CAS  PubMed  Google Scholar 

  6. 6.

    Salzman EW. Aspirin to prevent arterial thrombosis. N Engl J Med. 1982;307(2):113–5. https://doi.org/10.1056/nejm198207083070209.

    CAS  PubMed  Google Scholar 

  7. 7.

    Askie LM, Duley L, Henderson-Smart DJ, Stewart LA. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet. 2007;369(9575):1791–8.

    CAS  PubMed  Google Scholar 

  8. 8.

    Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402–14. https://doi.org/10.1097/AOG.0b013e3181e9322a.

    PubMed  Google Scholar 

  9. 9.

    Roberge S, Villa P, Nicolaides K, Giguere Y, Vainio M, Bakthi A, et al. Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta-analysis. Fetal Diagn Ther. 2012;31(3):141–6. https://doi.org/10.1159/000336662.

    PubMed  Google Scholar 

  10. 10.

    Roberge S, Nicolaides K, Demers S, Hyett J, Chaillet N, Bujold E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am J Obstet Gynecol. 2017;216(2):110–20.e6. https://doi.org/10.1016/j.ajog.2016.09.076.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Google Scholar 

  12. 12.

    ACOG Committee Opinion No. 743. Low-dose aspirin use during pregnancy. Obstet Gynecol. 2018;132(1):e44–52. https://doi.org/10.1097/aog.0000000000002708.

    Google Scholar 

  13. 13.

    Henderson JT, Whitlock EP, O'Connor E, Senger CA, Thompson JH, Rowland MG. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. preventive services task force. Ann Intern Med. 2014. https://doi.org/10.7326/M13-2844.

  14. 14.

    Nelson DM, Walsh SW. Thromboxane and prostacyclin production by different compartments of the human placental villus. J Clin Endocrinol Metab. 1989;68(3):676–83.

    CAS  PubMed  Google Scholar 

  15. 15.

    Walsh SW, Behr MJ, Allen NH. Placental prostacyclin production in normal and toxemic pregnancies. Am J Obstet Gynecol. 1985;151:110–5.

    CAS  PubMed  Google Scholar 

  16. 16.

    Blaho VA, Buczynski MW, Brown CR, Dennis EA. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J Biol Chem. 2009;284(32):21599–612. https://doi.org/10.1074/jbc.M109.003822.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X, Mishra SK, et al. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature. 2013;500(7463):463–7. https://doi.org/10.1038/nature12332.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res. 2009;50(8):1692–707. https://doi.org/10.1194/jlr.D800051-JLR200.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wijesinghe DS, Allegood JC, Gentile LB, Fox TE, Kester M, Chalfant CE. Use of high performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the analysis of ceramide-1-phosphate levels. J Lipid Res. 2010;51(3):641–51. https://doi.org/10.1194/jlr.D000430.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, et al. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol. 2019;234(3):2083–94. https://doi.org/10.1002/jcp.27353.

    CAS  PubMed  Google Scholar 

  21. 21.

    Mao C, Obeid LM. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta. 2008;1781(9):424–34. https://doi.org/10.1016/j.bbalip.2008.06.002.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991;114(1):155–67.

    CAS  PubMed  Google Scholar 

  23. 23.

    Norris GH, Blesso CN. Dietary and endogenous sphingolipid metabolism in chronic inflammation. Nutrients. 2017;9(11). https://doi.org/10.3390/nu9111180.

  24. 24.

    Coant N, Sakamoto W, Mao C, Hannun YA. Ceramidases, roles in sphingolipid metabolism and in health and disease. Advances in biological regulation. 2017;63:122–31. https://doi.org/10.1016/j.jbior.2016.10.002.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kerage D, Brindley DN, Hemmings DG. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta. 2014;35(Suppl):S86–92. https://doi.org/10.1016/j.placenta.2013.12.006.

    CAS  PubMed  Google Scholar 

  26. 26.

    Huppertz B, Kadyrov M, Kingdom JC. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol. 2006;195(1):29–39.

    PubMed  Google Scholar 

  27. 27.

    Westwood M, Al-Saghir K, Finn-Sell S, Tan C, Cowley E, Berneau S, et al. Vitamin D attenuates sphingosine-1-phosphate (S1P)-mediated inhibition of extravillous trophoblast migration. Placenta. 2017;60:1–8. https://doi.org/10.1016/j.placenta.2017.09.009.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Charkiewicz K, Goscik J, Blachnio-Zabielska A, Raba G, Sakowicz A, Kalinka J, et al. Sphingolipids as a new factor in the pathomechanism of preeclampsia - mass spectrometry analysis. PLoS One. 2017;12(5):e0177601. https://doi.org/10.1371/journal.pone.0177601.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Melland-Smith M, Ermini L, Chauvin S, Craig-Barnes H, Tagliaferro A, Todros T, et al. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11(4):653–69. https://doi.org/10.1080/15548627.2015.1034414.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta. 2015;1851(4):340–55. https://doi.org/10.1016/j.bbalip.2014.10.008.

    CAS  PubMed  Google Scholar 

  31. 31.

    Li J, Rao J, Liu Y, Cao Y, Zhang Y, Zhang Q, et al. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-kappaB. Arterioscler Thromb Vasc Biol. 2013;33(5):971–9. https://doi.org/10.1161/atvbaha.113.301335.

    CAS  PubMed  Google Scholar 

  32. 32.

    Stenson WF, Parker CW. Leukotrienes. Adv Intern Med. 1984;30:175–99.

    CAS  PubMed  Google Scholar 

  33. 33.

    Rubin P, Mollison KW. Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway eicosanoids. Prostaglandins Other Lipid Mediat. 2007;83(3):188–97. https://doi.org/10.1016/j.prostaglandins.2007.01.005.

    CAS  PubMed  Google Scholar 

  34. 34.

    Goetzl EJ, Goldman DW, Naccache PH, Sha'afi RI, Pickett WC. Mediation of leukocyte components of inflammatory reactions by lipoxygenase products of arachidonic acid. Adv Prostaglandin Thromboxane Leukot Res. 1982;9:273–82.

    CAS  PubMed  Google Scholar 

  35. 35.

    Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 2015;120:9–16. https://doi.org/10.1016/j.prostaglandins.2015.03.002.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Waldman M, Peterson SJ, Arad M, Hochhauser E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016;125:108–17. https://doi.org/10.1016/j.prostaglandins.2016.05.007.

    CAS  PubMed  Google Scholar 

  37. 37.

    Garcia V, Schwartzman ML. Recent developments on the vascular effects of 20-hydroxyeicosatetraenoic acid. Curr Opin Nephrol Hypertens. 2017;26(2):74–82. https://doi.org/10.1097/mnh.0000000000000302.

    CAS  PubMed  Google Scholar 

  38. 38.

    Salafia CM, Pezzullo JC, Lopez-Zeno JA, Simmens S, Minior VK, Vintzileos AM. Placental pathologic features of preterm preeclampsia. Am J Obstet Gynecol. 1995;173(4):1097–105.

    CAS  PubMed  Google Scholar 

  39. 39.

    Plenty NL, Faulkner JL, Cotton J, Spencer SK, Wallace K, LaMarca B, et al. Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018;136:15–22. https://doi.org/10.1016/j.prostaglandins.2018.03.001.

    CAS  PubMed  Google Scholar 

  40. 40.

    Catella F, Lawson JA, Fitzgerald DJ, FitzGerald GA. Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proc Natl Acad Sci U S A. 1990;87(15):5893–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Fang X, Hu S, Xu B, Snyder GD, Harmon S, Yao J, et al. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. Am J Physiol Heart Circ Physiol. 2006;290(1):H55–63. https://doi.org/10.1152/ajpheart.00427.2005.

    CAS  PubMed  Google Scholar 

  42. 42.

    Yang T, Peng R, Guo Y, Shen L, Zhao S, Xu D. The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins. Lipids Health Dis. 2013;12:151. https://doi.org/10.1186/1476-511x-12-151.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bowen RS, Zhang Y, Gu Y, Lewis DF, Wang Y. Increased phospholipase A2 and thromboxane but not prostacyclin production by placental trophoblast cells from normal and preeclamptic pregnancies cultured under hypoxia condition. Placenta. 2005;26(5):402–9.

    CAS  PubMed  Google Scholar 

  44. 44.

    Bussolino F, Benedetto C, Massobrio M, Camussi G. Maternal vascular prostacyclin activity in pre-eclampsia. Lancet. 1980;2(8196):702.

    CAS  PubMed  Google Scholar 

  45. 45.

    Cervar M, Kainer F, Jones CJ, Desoye G. Altered release of endothelin-1,2 and thromboxane B2 from trophoblastic cells in pre-eclampsia. Eur J Clin Investig. 1996;26(1):30–7.

    CAS  Google Scholar 

  46. 46.

    Ding ZQ, Rowe J, Sinosich MJ, Saunders DM, Gallery EDM. In-vitro secretion of prostanoids by placental villous cytotrophoblasts in pre-eclampsia. Placenta. 1996;17(7):407–11.

    CAS  PubMed  Google Scholar 

  47. 47.

    Downing I, Shepherd GL, Lewis PJ. Reduced prostacyclin production in pre-eclampsia. Lancet. 1980;2(8208–8209):1374.

    CAS  PubMed  Google Scholar 

  48. 48.

    Johnson RD, Sadovsky Y, Graham C, Anteby EY, Polakoski KL, Huang X, et al. The expression and activity of prostaglandin H synthase-2 is enhanced in trophoblast from women with preeclampsia. J Clin Endocrinol Metab. 1997;82(9):3059–62.

    CAS  PubMed  Google Scholar 

  49. 49.

    Remuzzi G, Marchesi D, Zoja C, Muratore D, Mecca G, Misiani R, et al. Reduced umbilical and placental vascular prostacyclin in severe preeclampsia. Prostaglandins. 1980;20(1):105–10.

    CAS  PubMed  Google Scholar 

  50. 50.

    Walsh SW, Wang Y, Jesse R. Placental production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. Hypertens Pregn. 1996;15(1):101–11.

    Google Scholar 

  51. 51.

    Wang Y, Walsh SW, Kay HH. Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am J Obstet Gynecol. 1992;167:946–9.

    CAS  PubMed  Google Scholar 

  52. 52.

    Woodworth SH, Li X, Lei ZM, Rao CV, Yussman MA, Spinnato JA 2nd, et al. Eicosanoid biosynthetic enzymes in placental and decidual tissues from preeclamptic pregnancies: increased expression of thromboxane-A2 synthase gene. J Clin Endocrinol Metab. 1994;78(5):1225–31.

    CAS  PubMed  Google Scholar 

  53. 53.

    Thorp JA, Walsh SW, Brath PC. Low-dose aspirin inhibits thromboxane, but not prostacyclin, production by human placental arteries. Am J Obstet Gynecol. 1988;159(6):1381–4.

    CAS  PubMed  Google Scholar 

  54. 54.

    Walsh SW, Wang Y. Trophoblast and placental villous core production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. J Clin Endocrinol Metab. 1995;80:1888–93.

    CAS  PubMed  Google Scholar 

  55. 55.

    Nelson DM, Walsh SW. Aspirin differentially affects thromboxane and prostacyclin production by trophoblast and villous core compartments of human placental villi. Am J Obstet Gynecol. 1989;161(6 Pt 1):1593–8.

    CAS  PubMed  Google Scholar 

  56. 56.

    Walsh SW, Wang Y. Maternal perfusion with low-dose aspirin preferentially inhibits placental thromboxane while sparing prostacyclin. Hypertens Pregn. 1998;17(2):203–15.

    CAS  Google Scholar 

  57. 57.

    Wang Y, Walsh SW. Aspirin inhibits both lipid peroxides and thromboxane in preeclamptic placentas. Free Radic Biol Med. 1995;18(3):585–91.

    CAS  PubMed  Google Scholar 

  58. 58.

    Bilodeau JF. Review: maternal and placental antioxidant response to preeclampsia - impact on vasoactive eicosanoids. Placenta. 2014;35(Suppl):S32–8. https://doi.org/10.1016/j.placenta.2013.11.013.

    CAS  PubMed  Google Scholar 

  59. 59.

    Walsh SW, Vaughan JE, Wang Y, Roberts LJ II. Placental isoprostane is significantly increased in preeclampsia. FASEB J. 2000;14(10):1289–96.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kukreja RC, Kontos HA, Hess ML, Ellis EF. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 1986;59(6):612–9.

    CAS  PubMed  Google Scholar 

  61. 61.

    Walsh SW, Wang Y, Kay HH, McCoy MC. Low-dose aspirin inhibits lipid peroxides and thromboxane but not prostacyclin in pregnant women. Am J Obstet Gynecol. 1992;167(4 Pt 1):926–30.

    CAS  PubMed  Google Scholar 

  62. 62.

    Williams MA, Zingheim RW, King IB, Zebelman AM. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995;6(3):232–7.

    CAS  PubMed  Google Scholar 

  63. 63.

    Finneran MM, Gonzalez-Brown VM, Smith DD, Landon MB, Rood KM. Obesity and laboratory aspirin resistance in high-risk pregnant women treated with low-dose aspirin. Am J Obstet Gynecol. 2019;220(4):385.e1–6. https://doi.org/10.1016/j.ajog.2019.01.222.

    CAS  Google Scholar 

  64. 64.

    Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2018;218(3):287–93.e1. https://doi.org/10.1016/j.ajog.2017.11.561.

    CAS  PubMed  Google Scholar 

  65. 65.

    Rolnik DL, Wright D, Poon LC, O'Gorman N, Syngelaki A, de Paco MC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22. https://doi.org/10.1056/NEJMoa1704559.

    CAS  Google Scholar 

  66. 66.

    Seidler AL, Askie L, Ray JG. Optimal aspirin dosing for preeclampsia prevention. Am J Obstet Gynecol. 2018;219(1):117–8. https://doi.org/10.1016/j.ajog.2018.03.018.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development Grant 1 U01 HD087198 (SWW, CEC) and by the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott W. Walsh.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Office of Research Subjects Protection of Virginia Commonwealth University (HM20005160) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1072 kb)

Supplemental Data

Supplemental Data

All eicosanoid and sphingolipid data for normal pregnancy, mild preeclampsia and severe preeclampsia are presented in the Supplemental Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walsh, S.W., Reep, D.T., Alam, S.M.K. et al. Placental Production of Eicosanoids and Sphingolipids in Women Who Developed Preeclampsia on Low-Dose Aspirin. Reprod. Sci. (2020). https://doi.org/10.1007/s43032-020-00234-2

Download citation

Keywords

  • Low-dose aspirin
  • Preeclampsia
  • Eicosanoids
  • Sphingolipids
  • Placenta