Skip to main content

Advertisement

Log in

Glutathione S-transferase genes in scallops and their diverse expression patterns after exposure to PST-producing dinoflagellates

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The glutathione S-transferases (GSTs) are a superfamily of enzymes that function in cellular protection against toxic substances and oxidative stress. Bivalves could accumulate high concentration of paralytic shellfish toxins (PSTs) from harmful algae. To understand the possible involvement of GSTs in protecting bivalves during PST accumulation and metabolism, the GST genes were systemically analyzed in two cultured scallops, Azumapecten farreri and Mizuhopecten yessoensis, which were reported for PST deposition during harmful algae bloom. A total of 35 and 37 GSTs were identified in A. farreri (AfGSTs) and M. yessoensis (MyGSTs) genome, respectively, and the expansion of the sigma class from the cytosolic subfamily was observed. In both scallop species, sigma class GSTs showed higher expression than other members. The high GSTs expression was detected mainly during/after larvae stages and in the two most toxic organs, hepatopancreas and kidney. After ingesting PST-producing dinoflagellates, all the regulated AfGSTs in the hepatopancreas were from the sigma class, but with opposite regulation pattern between Alexandrium catenella and A. minutum exposure. In scallop kidneys, where PSTs transformed into higher toxicity, more AfGSTs were regulated than in the hepatopancreas, and most of them were from the sigma class, with similar regulation pattern between A. catenella and A. minutum exposure. In M. yessoensis exposed to A. catenella, MyGST-σ2 was the only up-regulated MyGST in both hepatopancreas and kidney. Our results suggested the possible diverse function of scallop GSTs and the importance of sigma class in the defense against PSTs, which would contribute to the adaptive evolution of scallops in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The RNA-Seq data used in this study were deposited in NCBI Sequence Read Archive, with the accession numbers as follows: Developmental stages of A. farreri: SRX2444869 (Juveniles), data for other developmental stages are still unpublished; Tissues of A. farreri: SRX2444844, SRX2444846-SRX2444848, SRX2444850, SRX2444856, SRX2444858-SRX2444860, SRX2444863, SRX2444871, SRX2444873-SRX2444876; A. farreri exposed to A. minutum: SRX2445405-SRX2445440; Data for A. farreri exposed to A. catenella are still unpublished; Developmental stages of M. yessoensis: SRX1026991, SRX2238787-SRX2238792; Tissues of M. yessoensis: SRX2238797-SRX2238799, SRX2238801-SRX2238804, SRX2238807, SRX2250257, SRX2250258, SRX2251047, SRX2251049, and SRX2279546; The RNA-seq data of kidney and hepatopancreas after exposed to A. catenella are still unpublished. Some unpublished data are included in our on-going project and will be released soon, therefore, if any readers are interested in these data, they are welcome to contact with the corresponding author for further query.

References

  • Anderson DM (1990) Toxin variability in Alexandrium species. In: Granéli EP, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 41–51

    Google Scholar 

  • Cao R, Wang D, Wei Q, Wang Q, Yang D, Liu H, Dong Z, Zhang X, Zhang Q, Zhao J (2018) Integrative biomarker assessment of the influence of saxitoxin on marine bivalves: a comparative study of the two bivalve species oysters, Crassostrea gigas, and scallops, Chlamys farreri. Front Physiol 9:1173

    PubMed  PubMed Central  Google Scholar 

  • Chang FH, Anderson DM, Kulis DM, Till DG (1997) Toxin production of Alexandrium minutum (Dinophyceae) from the bay of Plenty, New Zealand. Toxicon 35:393–409

    CAS  PubMed  Google Scholar 

  • Chen JH, Yu RC, Gao Y, Kong FZ, Wang YF, Zhang QC, Kang ZJ, Yan T, Zhou MJ (2013) Tracing the origin of paralytic shellfish toxins in scallop Patinopecten yessoensis in the northern Yellow Sea. Food Addit Contam A 30:1933–1945

    CAS  Google Scholar 

  • Chetty A (1995) Free radical toxicity in a freshwater bivalve, Lamellidens marginalis, under ambient ammonia stress. J Environ Biol 16:137–142

    CAS  Google Scholar 

  • Cho Y, Tsuchiya S, Omura T, Koike K, Oikawa H, Konoki K, Oshima Y, Yotsu-Yamashita M (2019) Metabolomic study of saxitoxin analogues and biosynthetic intermediates in dinoflagellates using 15 N-labelled sodium nitrate as a nitrogen source. Sci Rep 9:1–11

    Google Scholar 

  • Choi NM, Yeung LW, Siu WH, So IM, Jack RW, Hsieh DP, Wu RS, Lam PK (2006) Relationships between tissue concentrations of paralytic shellfish toxins and antioxidative responses of clams, Ruditapes philippinarum. Mar Pollut Bull 52:572–577

    CAS  PubMed  Google Scholar 

  • Chow W-H, Dong LM, Devesa SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7:245–257

    PubMed  PubMed Central  Google Scholar 

  • Daggett DA, Oberley TD, Nelson SA, Wright LS, Kornguth SE, Siegel FL (1998) Effects of lead on rat kidney and liver: GST expression and oxidative stress. Toxicology 128:191–206

    CAS  PubMed  Google Scholar 

  • Fabioux C, Sulistiyani Y, Haberkorn H, Hégaret H, Amzil Z, Soudant P (2015) Exposure to toxic Alexandrium minutum activates the detoxifying and antioxidant systems in gills of the oyster Crassostrea gigas. Harmful Algae 48:55–62

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PJ, Sheehan D, Livingstone DR (1995) Studies on isoenzymes of glutathione S-transferase in the digestive gland of Mytilus galloprovincialis with exposure to pollution. Mar Environ Res 39:241–244

    CAS  Google Scholar 

  • Flanagan JU, Smythe ML (2011) Sigma-class glutathione transferases. Drug Metab Rev 43:194–214

    CAS  PubMed  Google Scholar 

  • Flores HS, Wikfors GH, Dam HG (2012) Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protists. Aquat Microb Ecol 66:199–209

    Google Scholar 

  • Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23:149–169

    CAS  PubMed  Google Scholar 

  • Gainey L Jr (1998) A compendium of the responses of bivalve molluscs to toxic dinoflagellate. J Shellfish Res 7:623–628

    Google Scholar 

  • Gainey LF Jr, Shumway SE (1988) Physiological effects of Protogonyaulax tamarensis on cardiac activity in bivalve molluscs. Comp Biochem Phys C 91:159–164

    Google Scholar 

  • Garcia-Lagunas N, Romero-Geraldo R, Hernandez-Saavedra NY (2013) Genomics study of the exposure effect of Gymnodinium catenatum, a paralyzing toxin producer, on Crassostrea gigas' defense system and detoxification genes. PLoS ONE 8:e72323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao L, Xie P, Fu J, Li G, Xiong Q, Li H (2008) The effect of cyanobacterial crude extract on the transcription of GST mu, GST kappa and GST rho in different organs of goldfish (Carassius auratus). Aquat Toxicol 90:1–7

    CAS  PubMed  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radic Res 31:273–300

    CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–520

    CAS  PubMed  Google Scholar 

  • Hayes JD, Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61:154–166

    CAS  PubMed  Google Scholar 

  • He Z, Duan G, Liang C, Li H, Liu J, Yang W (2019) Up-regulation of Nrf2-dependent antioxidant defenses in Perna viridis after exposed to Prorocentrum lima. Fish Shellfish Immun 90:173–179

    CAS  Google Scholar 

  • Helvecio E, Romao TP, Leandro DDC, De Oliveira IF, Cavalcanti AEHD, Reimer LJ, Cavalcanti MDP, De Oliveira APS, Paiva PMG, Napoleao TH (2019) Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pestic Biochem Phys 165:104464

    Google Scholar 

  • Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, Hu X (2011) Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS ONE 6:e21560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Li M, Yu X, Xun X, Lu W, Li X, Li Y, Lou J, Wang S, Zhang L, Cheng J, Hu X, Bao Z (2019) Diverse expression regulation of Hsp70 genes in scallops after exposure to toxic Alexandrium dinoflagellates. Chemosphere 234:62–69

    CAS  PubMed  Google Scholar 

  • Kim CS, Lee SG, Lee CK, Kim HG, Jung J (1999) Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21:2105–2115

    CAS  Google Scholar 

  • Knight TR, Choudhuri S, Klaassen CD (2007) Constitutive mRNA expression of various glutathione S-transferase isoforms in different tissues of mice. Toxicol Sci 100:513–524

    CAS  PubMed  Google Scholar 

  • Lassus P, Bardouil M, Beliaeff B, Masselin P, Naviner M, Truquet P (1999) Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum Halim on the feeding behavior of the Pacific oyster (Crassostrea gigas Thunberg). J Shellfish Res 18:211–216

    Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    CAS  PubMed  Google Scholar 

  • Leaver MJ, Scott K, George SG (1993) Cloning and characterization of the major hepatic glutathione S-transferase from a marine teleost flatfish, the plaice (Pleuronectes platessa), with structural similarities to plant, insect and mammalian Theta class isoenzymes. Biochem J 292:189–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wu H, Wang Q, Li X, Zhao J (2015) Glutathione S-transferase (GST) gene expression profiles in two marine bivalves exposed to BDE-47 and their potential molecular mechanisms. Chin J Ocean Limnol 33:705–713

    CAS  Google Scholar 

  • Li Y, Sun X, Hu X, Xun X, Zhang J, Guo X, Jiao W, Zhang L, Liu W, Wang J, Li J, Sun Y, Miao Y, Zhang X, Cheng T, Xu G, Fu X, Wang Y, Yu X, Huang X et al (2017) Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun 8:1–11

    Google Scholar 

  • Lian S, Zhao L, Xun X, Lou J, Li M, Li X, Wang S, Zhang L, Hu X, Bao Z (2019) Genome-wide identification and characterization of SODs in Zhikong scallop reveals gene expansion and regulation divergence after toxic dinoflagellate exposure. Mar Drugs 17:700

    PubMed Central  Google Scholar 

  • Liang L, He B, Jiang G, Chen D, Yao Z (2004) Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Sci Total Environ 324:105–113

    CAS  PubMed  Google Scholar 

  • Liu Y, Yu RC, Kong FZ, Chen ZF, Dai L, Gao Y, Zhang QC, Wang YF, Yan T, Zhou MJ (2017) Paralytic shellfish toxins in phytoplankton and shellfish samples collected from the Bohai Sea, China. Mar Pollut Bull 115:324–331

    CAS  PubMed  Google Scholar 

  • Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8

    CAS  PubMed  Google Scholar 

  • Mat AM, Haberkorn H, Bourdineaud J, Massabuau J, Tran D (2013) Genetic and genotoxic impacts in the oyster Crassostrea gigas exposed to the harmful alga Alexandrium minutum. Aquat Toxicol 140:458–465

    PubMed  Google Scholar 

  • Navarro J, Muñoz M, Contreras A (2006) Temperature as a factor regulating growth and toxin content in the dinoflagellate Alexandrium catenella. Harmful Algae 5:762–769

    CAS  Google Scholar 

  • Prego-Faraldo MV, Vieira LR, Eirin-Lopez JM, Mendez J, Guilhermino L (2017) Transcriptional and biochemical analysis of antioxidant enzymes in the mussel Mytilus galloprovincialis during experimental exposures to the toxic dinoflagellate Prorocentrum lima. Mar Environ Res 129:304–315

    CAS  PubMed  Google Scholar 

  • Rhee J-S, Kim B-M, Jeong C-B, Leung KMY, Park GS, Lee J-S (2013) Development of enzyme-linked immunosorbent assay (ELISA) for glutathione S-transferase (GST-S) protein in the intertidal copepod Tigriopus japonicus and its application for environmental monitoring. Chemosphere 93:2458–2466

    CAS  PubMed  Google Scholar 

  • Rodrigues S, Antunes SC, Correia AT, Golovko O, Žlabek V, Nunes B (2019) Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere 216:234–247

    CAS  PubMed  Google Scholar 

  • Sandamalika WMG, Priyathilaka TT, Liyanage DS, Lee S, Lim H, Lee J (2018) Molecular characterization of kappa class glutathione S-transferase from the disk abalone (Haliotis discus discus) and changes in expression following immune and stress challenges. Fish Shellfish Immun 77:252–263

    CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu Y, Yoshioka M (1981) Transformation of paralytic shellfish toxins as demonstrated in scallop homogenates. Science 212:547–549

    CAS  PubMed  Google Scholar 

  • Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquac Soc 21:65–104

    Google Scholar 

  • Shumway S, Gainey L (1992) A review of physiological effects of toxic dinoflagellates on bivalve molluscs. Dissertation, Proceedings of Ninth International Malacological Congress.

  • Soranzo N, Gorla MS, Mizzi L, De Toma G, Frova C (2004) Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genom 271:511–521

    CAS  Google Scholar 

  • Tan KS, Ransangan J (2015) Factors influencing the toxicity, detoxification and biotransformation of paralytic shellfish toxins. Rev Environ Contam Toxicol 235:1–25

    CAS  PubMed  Google Scholar 

  • Tran D, Haberkorn H, Soudant P, Ciret P, Massabuau J-C (2010) Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum. Aquaculture 298:338–345

    Google Scholar 

  • Wang X, Yang H, Liu G, Wang Q (2011) Enzyme responses and lipid peroxidation in gills and hepatopancreas of clam Mactra vereformis, following cadmium exposure. Chin J Ocean Limnol 29:981

    CAS  Google Scholar 

  • Wang S, Hou R, Bao Z, Du H, He Y, Su H, Zhang Y, Fu X, Jiao W, Li Y, Zhang L, Wang S, Hu X (2013) Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS ONE 8:e63927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L, Hu X, Sun X, Wang J, Zhao C, Wang Y, Wang D, Huang X, Wang R, Lv J, Li Y et al (2017) Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 1:1–12

    Google Scholar 

  • Won EJ, Kim RO, Rhee JS, Park GS, Lee J, Shin KH, Lee YM, Lee JS (2011) Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia. Comp Biochem Physiol C 154:82–92

    Google Scholar 

  • Zou Y, Wei X-M, Weng H-W, Li H-Y, Liu J-S, Yang W-D (2015) Expression profile of eight glutathione S-transferase genes in Crassostrea ariakensis after exposure to DSP toxins producing dinoflagellate Prorocentrum lima. Toxicon 105:45–55

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (2019YFC1605704), the National Natural Science Foundation of China (31630081 and 31802292), and Taishan Industry Leading Talent Project.

Author information

Authors and Affiliations

Authors

Contributions

XH and ZB designed the study, JL, XX, and ML carried out the experiments. JL, JC, XX, XZ, and TL analyzed the data. XH, JC, and JL wrote the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoli Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This study was conducted in accordance with the Institutional Animal Care and Use Committee of Ocean University of China, and it does not contain any studies with human participants.

Additional information

Edited by Xin Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Cheng, J., Xun, X. et al. Glutathione S-transferase genes in scallops and their diverse expression patterns after exposure to PST-producing dinoflagellates. Mar Life Sci Technol 2, 252–261 (2020). https://doi.org/10.1007/s42995-020-00050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-020-00050-2

Keywords

Navigation