Skip to main content
Log in

Characterization of harmonic functions by the behavior of means at a single point

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We give a characterization of harmonic functions by a mean value type property at a single point. We show that if u is real analytic in \(\Omega ,\) \({\mathbf {a}}\) is a fixed point of \(\Omega ,\) and if for all homogeneous polynomials p of degree k the one dimensional function

$$\begin{aligned} \varphi _{p}\left( r\right) =\int _{\mathbb {S}}u\left( \mathbf {a+} r\omega \right) p\left( \omega \right) \,\mathrm {d} \omega, \end{aligned}$$

is a polynomial of degree k at the most in some interval \(0\le r<\eta _{p},\) then u is harmonic in \(\Omega .\) If u is smooth, and \(\eta _{p}=\eta \) does not depend on p,  then we show that u must be harmonic in the ball of center \({\mathbf {a}}\) and radius \(\eta .\) We also give a result that applies to distributions. Furthermore, we characterize harmonic functions by flow integrals around a single point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For example the expression \(\omega _{1}+\omega _{2}^{3}\) does not look homogeneous, but corresponds to an element of \({\mathcal {P}}_{3},\) namely \(x_{1}r^{2} +x_{2}^{3}.\)

  2. We follow the usual convention that repeated indices are to be summed.

  3. Using the arguments of [4] we can just assume that \(u_{,i}\) are locally integrable.

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  2. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Interscience, New York (1962)

    MATH  Google Scholar 

  3. Estrada, R.: On radial functions and distributions and their Fourier transforms. J. Fourier Anal. Appl. 20, 301–320 (2014)

    Article  MathSciNet  Google Scholar 

  4. Estrada, R.: On Pizzetti’s formula. Asymptot. Anal. 111, 1–14 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Estrada, R.: Formal series on cylinders and their Radon transform. Vietnam J. Math. 47(2019), 417–430 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Estrada, R., Kanwal, R.P.: A distributional approach to Asymptotics. Theory Appl. 2\(^{\text{nd}}\) edition, Birkhäuser, Boston (2002)

  7. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  8. Grafakos, L., Teschl, G.: On Fourier transforms of radial functions and distributions. J. Fourier Anal. Appl. 19, 167–179 (2013)

    Article  MathSciNet  Google Scholar 

  9. Helgason, S.: Geometric Analysis on Symmetric Spaces. Amer. Math. Soc, Providence (2008)

    Book  Google Scholar 

  10. John, F.: Plane Waves and Spherical Means. Interscience, New York (1955)

    MATH  Google Scholar 

  11. Kuznetsov, N.: Mean value properties of harmonic functions and related topics (a survey). J. Math. Sci. 242, 177–199 (2019)

    Article  MathSciNet  Google Scholar 

  12. Łojasiewicz, S.: Sur la valuer et la limite d’une distribution en un point. Stud. Math. 16, 1–36 (1957)

    Article  MathSciNet  Google Scholar 

  13. Łojasiewicz, S.: Sur la fixation de variables dans une distribution. Stud. Math. 17, 1–64 (1958)

    Article  MathSciNet  Google Scholar 

  14. Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. World Scientific, Singapore (2011)

    Book  Google Scholar 

  15. Pizzetti, P.: Sulla media dei valori che una funzione del punti dello spazio assume alla superficie di una spera. Rend. Lincei 18, 182–185 (1909)

    MATH  Google Scholar 

  16. Poritsky, H.: Generalizations of the Gauss law of the spherical mean. Trans. Am. Math. Soc. 43, 199–225 (1938)

    Article  MathSciNet  Google Scholar 

  17. Quinto, E.T.: Mean value extension theorems and microlocal analysis. Proc. Am. Math. Soc. 131, 3267–3274 (2003)

    Article  MathSciNet  Google Scholar 

  18. Rubin, B.: Introduction to Radon transforms (with elements of Fractional calculus and Harmonic Analysis). Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  19. Trèves, F.: Topological Vector Spaces, Distributions, and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  20. Vladimirov, V.S., Drozhinov, Y.N., Zavyalov, B.I.: Tauberian Theorems for Generalized Functions. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

  21. Zalcman, L.: Mean values and differential equations. Israel J. Math. 14, 339–352 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Estrada.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, R. Characterization of harmonic functions by the behavior of means at a single point. SN Partial Differ. Equ. Appl. 1, 2 (2020). https://doi.org/10.1007/s42985-019-0003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-019-0003-z

Keywords

Mathematics Subject Classification

Navigation