Skip to main content
Log in

Metabolic Adaptations to Exercise Training

  • Review article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

The health benefits of exercise have attracted substantial attention, because regular exercise can strengthen muscles and improve endurance. Physical activity is an integral part of an overall healthy lifestyle, which helps protect against chronic diseases, such as obesity, insulin resistance and type 2 diabetes. In consideration of the differences in duration, intensity, and type of activity of exercise, it is likely to involve different signaling pathways and bring different benefits in different tissues. Here we review our growing knowledge of exercise training adaptations and regulation in cellular processes related to energy metabolism, aging and autophagy, and many important findings remain to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: the multi-purpose bridge in viral infections and host cells. Rev Med Virol. 2018;28(4):e1973.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr (Oslo, Norway: 1992). 2009;98(2):229–38.

    Article  CAS  Google Scholar 

  3. Aoi W, Naito Y, Yoshikawa T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radic Biol Med. 2013;65:1265–72.

    Article  CAS  PubMed  Google Scholar 

  4. Barlow AD, Thomas DC. Autophagy in diabetes: beta-cell dysfunction, insulin resistance, and complications. DNA Cell Biol. 2015;34(4):252–60.

    Article  CAS  PubMed  Google Scholar 

  5. Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018;4(2):dvy010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(4):451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Budanov AV, Lee JH, Karin M. Stressin’ Sestrins take an aging fight. EMBO Mol Med. 2010;2(10):388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Haggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One. 2016;11(3):e0150502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen GY. The role of the gut microbiome in colorectal cancer. Clin Colon Rectal Surg. 2018;31(3):192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Carvalho Souza Vieira M, Boing L, Leitao AE, Vieira G, Coutinho de Azevedo Guimaraes A. Effect of physical exercise on the cardiorespiratory fitness of men-A systematic review and meta-analysis. Maturitas. 2018;115:23–30.

    Article  PubMed  Google Scholar 

  11. Dos Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism. 2015;64(12):1619–28.

    Article  PubMed  CAS  Google Scholar 

  12. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3):e92193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Faitg J, Reynaud O, Leduc-Gaudet JP, Gouspillou G. Skeletal muscle aging and mitochondrial dysfunction: an update. Med Sci M/S. 2017;33(11):955–62.

    Google Scholar 

  15. Gill PA, van Zelm MC. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 2018;48(1):15–34.

    Article  CAS  PubMed  Google Scholar 

  16. Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA, Hall MN. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012;15(5):725–38.

    Article  CAS  PubMed  Google Scholar 

  17. Halling JF, Ringholm S, Olesen J, Prats C, Pilegaard H. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1alpha dependent manner. Exp Gerontol. 2017;96:1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hawley JA, Maughan RJ, Hargreaves M. Exercise metabolism: historical perspective. Cell Metab. 2015;22(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, Chuang HL. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015;29(2):552–8.

    Article  PubMed  Google Scholar 

  20. Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol. 2014;36:79–90.

    Article  PubMed  CAS  Google Scholar 

  21. Kato Y, Islam MM, Koizumi D, Rogers ME, Takeshima N. Effects of a 12-week marching in place and chair rise daily exercise intervention on ADL and functional mobility in frail older adults. J Phys Ther Sci. 2018;30(4):549–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim TH, Eom JS, Lee CG, Yang YM, Lee YS, Kim SG. An active metabolite of oltipraz (M2) increases mitochondrial fuel oxidation and inhibits lipogenesis in the liver by dually activating AMPK. Br J Pharmacol. 2013;168(7):1647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laughlin MH, Roseguini B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol. 2008;59(Suppl 7):71–88.

    PubMed  PubMed Central  Google Scholar 

  25. Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Bandyopadhyay G, Li N, Aghajan M, Jang I, Wolfe AM, Perkins GA, Ellisman MH, Bier E, Scadeng M, Foretz M, Viollet B, Olefsky J, Karin M. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab. 2012;16(3):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Liu S, Yuan H, Niu Y, Fu L. Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res. 2017;354(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  27. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Yuan H, Niu Y, Niu W, Fu L. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochem Biophys Acta. 2012;1822(11):1716–26.

    CAS  PubMed  Google Scholar 

  29. Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism. 2015;64(6):658–65.

    Article  CAS  PubMed  Google Scholar 

  30. Lundsgaard AM, Fritzen AM, Kiens B. Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol Metab. 2018;29(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, Hara H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72(2):572–6.

    Article  CAS  PubMed  Google Scholar 

  32. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, Viggiano A, Cibelli G, Chieffi S, Monda M, Messina G. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mounier R, Theret M, Lantier L, Foretz M, Viollet B. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab TEM. 2015;26(6):275–86.

    Article  CAS  PubMed  Google Scholar 

  34. Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of central and peripheral regulation of the circulation during exercise: acute and chronic adaptations. Compr Physiol. 2017;8(1):103–51.

    Article  PubMed  Google Scholar 

  35. Nilsson EE, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res. 2015;165(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson PA, Rönn T, Hansson O, Eriksson KF, Groop L, Ling C. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61(12):3322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niu Y, Wang T, Liu S, Yuan H, Li H, Fu L. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKalpha2-dependent manner. Biochem Biophys Acta. 2017;1863(9):2372–81.

    CAS  Google Scholar 

  38. Palmisano NJ, Melendez A. Autophagy in C. elegans development. Dev Biol. 2018;447(1):103–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014;9(4):1281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, Giustina A, Gazzaruso C. Microbiota and metabolic diseases. Endocrine. 2018;61(3):357–71.

    Article  CAS  PubMed  Google Scholar 

  41. Pearson-Leary J, McNay EC. Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J Neurosci. 2016;36(47):11851–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petriz BA, Gomes CP, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL. The effects of acute and chronic exercise on skeletal muscle proteome. J Cell Physiol. 2017;232(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  43. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261–75.

    Article  CAS  PubMed  Google Scholar 

  44. Ricoult SJ, Manning BD. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14(3):242–51.

    Article  CAS  PubMed  Google Scholar 

  45. Rivas DA, Yaspelkis BB 3rd, Hawley JA, Lessard SJ. Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5′-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside. J Endocrinol. 2009;202(3):441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R. 2012;4(11):797–804.

    Article  PubMed  Google Scholar 

  47. Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shah AK, Gupta A, Dey CS. AICAR induced AMPK activation potentiates neuronal insulin signaling and glucose uptake. Arch Biochem Biophys. 2011;509(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  49. Tao R, Xiong X, Liangpunsakul S, Dong XC. Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes. 2015;64(4):1211–23.

    Article  CAS  PubMed  Google Scholar 

  50. Tarrago MG, Chini CCS, Kanamori KS, Warner GM, Caride A, de Oliveira GC, Rud M, Samani A, Hein KZ, Huang R, Jurk D, Cho DS, Boslett JJ, Miller JD, Zweier JL, Passos JF, Doles JD, Becherer DJ, Chini EN. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) decline. Cell Metab. 2018;27(5):1081–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Teglas T, Dornyei G, Bretz K, Nyakas C. Whole-body pulsed EMF stimulation improves cognitive and psychomotor activity in senescent rats. Behav Brain Res. 2018;349:163–8.

    Article  PubMed  Google Scholar 

  52. Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol (Bethesda, Md: 1985). 2008;104(3):625–32.

    Article  CAS  Google Scholar 

  53. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res. 2014;264(5):82–90.

    Article  CAS  PubMed  Google Scholar 

  54. Yin MM, Wang W, Sun J, Liu S, Liu XL, Niu YM, Yuan HR, Yang FY, Fu L. Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring. Behav Brain Res. 2013;253:297–304.

    Article  CAS  PubMed  Google Scholar 

  55. Yoon MS. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients. 2017;9(11):E1176.

    Article  PubMed  CAS  Google Scholar 

  56. Yu W, An C, Kang H. Effects of resistance exercise using thera-band on balance of elderly adults: a randomized controlled trial. J Phys Ther Sci. 2013;25(11):1471–3.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yuan H, Niu Y, Liu X, Fu L. Exercise increases the binding of MEF2A to the Cpt1b promoter in mouse skeletal muscle. Acta Physiol (Oxf). 2014;212(4):283–92.

    Article  CAS  Google Scholar 

  58. Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and molecular basis of neurodegeneration in Parkinson disease. Front Aging Neurosci. 2018;10:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548(7665):112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was funded by grants from the National Natural Science Foundation of China (NSFC) 31571220 (LF), 81501071(SJL) and 31671237 (YMN). The authors would like to thank Xiaolei Liu, Hairui Yuan and Huige Li for their works cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Niu, Y. & Fu, L. Metabolic Adaptations to Exercise Training. J. of SCI. IN SPORT AND EXERCISE 2, 1–6 (2020). https://doi.org/10.1007/s42978-019-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0018-3

Keywords

Navigation