Skip to main content
Log in

Nutrition in Soccer: A Brief Review of the Issues and Solutions

  • Review article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

This review examines the issues surrounding soccer nutrition, including the nature of the game, training, and how nutrition can play a significant role in improving player performance and recovery. In soccer match-play, a total distance covered of up to 13 km is characterised by an acyclical and intermittent activity profile. The aerobic system is highly taxed, with average heart rates of ~ 85% of maximal values, and the finite muscle glycogen stores represent a key aspect of the interface between training, performance and nutritional support. Diets with high CHO content can optimise muscle glycogen, reduce net glycogen depletion, delay the onset of fatigue, and improve soccer performance. It is more common, however, for players to consume an excessive amount of protein in their daily diet perpetuating the popular belief that additional protein increases strength and enhances performance. More comprehensive recommendations suggest that soccer players should consume a high CHO diet from nutrient-rich complex CHO food sources that ranges from a minimum of 7 to 10 g/kg BM and up to 12 g/kg BM on match or heavy training days. Unfortunately, players often have a low energy intake, which can lead to negative energy balance, especially at times of schedule congestion. In many cases, soccer players often consume diets that are not very different from those of the general public. Therefore, despite a clear understanding of the physiological demands of soccer, and the association between nutritional preparation and performance, the dietary habits of soccer players are often characterised by a lack of education and mis-informed sporting traditions. This review discusses the potential barriers and various nutritional phases that need to be considered for training, pre, on the day of, and post-match to enable players and coaches to be more aware of the need to achieve more optimal macronutrient nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson L, Orme P, Naughton RJ, Close GL, Milsom J, Rydings D, et al. Energy intake and expenditure of professional soccer players of the english premier league: evidence of carbohydrate periodization. Int J Sports Nutr Exerc Metab. 2017;27(3):228–38.

    CAS  Google Scholar 

  2. Anderson L, Orme P, Di Michele R, Close GL, Morgans R, Drust B, et al. Quantification of training load during one-, two- and three-game week schedules in professional soccer players from the English Premier League: implications for carbohydrate periodisation. J Sports Sci. 2016;34(13):1250–9.

    PubMed  Google Scholar 

  3. Anderson L, Close GL, Morgans R, Hambly C, Speakman JR, Drust B, et al. Case study: assessment of energy expenditure of a professional goalkeeper from the english premier league using the doubly labeled water method. Int J Sports Physiol Perform. 2018;1–13 (Epub ahead of print).

  4. Alghannam AF. Metabolic limitations of performance and fatigue in football. Asian J Sports Med. 2012;3(2):65–73.

    PubMed  PubMed Central  Google Scholar 

  5. Alghannam AF. Physiology of soccer: the role of nutrition in performance. Novel Physiother. 2013;3(2):1–5.

    Google Scholar 

  6. Andrzejewski M, Chmura J, Dybek T, Pluta B. Sport exercise capacity of soccer players at different levels of performance. Biol Sport. 2012;29:185–91.

    Google Scholar 

  7. Aziz A, Chia M, Teh K. The relationship between maximal oxygen uptake and repeated sprint performance indices in field hockey and soccer players. J Sports Med Phys Fitness. 2000;40:195–200.

    CAS  PubMed  Google Scholar 

  8. Balsom P, Gaitanos G, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165:337–45.

    CAS  PubMed  Google Scholar 

  9. Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand. 1994;619:1–155.

    CAS  Google Scholar 

  10. Bangsbo J. Physiological demands of football. Football Task Force. 2014;27(125):1–6.

    Google Scholar 

  11. Bangsbo J, Graham T, Kiens B, Saltin B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol. 1992;451:205–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bangsbo J, Iaia F, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2:111–27.

    PubMed  Google Scholar 

  13. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24:665–74.

    PubMed  Google Scholar 

  14. Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.

    CAS  PubMed  Google Scholar 

  15. Blennerhassett C, McNaughton LR, Cronin C, Sparks SA. Development and implementation of a nutrition knowledge questionnaire for ultra-endurance athletes. Int J Sports Nutr Exerc Metab. 2018. https://doi.org/10.1123/ijsnem.2017-0322 (Epub ahead of print).

    Article  Google Scholar 

  16. Bradley PS, Di Mascio M, Peart D, Olsen P, Sheldon B. High-intensity activity profiles of elite soccer players at different performance levels. J Strength Cond Res. 2010;24(9):2343–51.

    PubMed  Google Scholar 

  17. Briggs MA, Harper LD, McNamee G, Cockburn E, Rumbold PLS, Stevenson EJ, et al. The effects of an increased calorie breakfast consumed prior to simulated match-play in Academy soccer players. Eur J Sport Sci. 2017;17(7):858–66.

    PubMed  Google Scholar 

  18. Brinkmans NYJ, Iedema N, Plasqui G, Wouters L, Saris WHM, van Loon LJC, et al. Energy expenditure and dietary intake in professional football players in the Dutch Premier League: implications for nutritional counselling. J Sports Sci. 2019;16:1–9. https://doi.org/10.1080/02640414.2019.1576256 (Epub ahead of print).

    Article  Google Scholar 

  19. Burke L. Fuelling strategies to optimise performance: training high or training low? Scand J Med Sci Sports. 2010;20(2):48–58.

    PubMed  Google Scholar 

  20. Burke L, Bell L, Cort M, Cox G, Farthing L, Greenaway B, et al. Current concepts in sports nutrition. Australian Institue of Sport; 2016. p. 1–56.

  21. Burke L, Collier G, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the glycaemic index of carbohydrate feeding. J Appl Physiol. 1993;75(2):1019–23.

    CAS  PubMed  Google Scholar 

  22. Burke L, Cox GR, Cummings NK, Desbrow B. Guidelines for daily carbohydrate intake: do athletes achieve them. Sports Med. 2001;31(4):267–99.

    CAS  PubMed  Google Scholar 

  23. Burke L, Hawley J, Wong S, Jeukendrup A. Carbohydrates for training and competition. J Sports Sci. 2011;29(1):17–27.

    Google Scholar 

  24. Burke L, Kiens B, Ivy J. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22:15–30.

    PubMed  Google Scholar 

  25. Burke LM, Loucks AB, Broad N. Energy and carbohydrate for training and recovery. J Sports Sci. 2006;24(7):675–85.

    PubMed  Google Scholar 

  26. Burns RD, Schiller M, Merrick MA, Wolf KN. Intercollegiate student athlete use of nutritional supplements and the role of athletic trainers and dieticians in nutrition counseling. J Am Diet Assoc. 2004;104(2):246–9.

    PubMed  Google Scholar 

  27. Caruana Bonnici DC, Akubat I, Sparks SA, Greig M, Mc Naughton LR. Dietary habits and energy balance in an under 21 male international soccer team. Res Sports Med. 2018;26(2):168–77. https://doi.org/10.1080/15438627.2018.1431537.

    Article  PubMed  Google Scholar 

  28. Chryssanthopoulos C, Williams C, Nowitz A, Bogdanis G. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004;22(11–12):1065–71.

    PubMed  Google Scholar 

  29. Clark K. Nutritional guidance to soccer players for training and competition. J Sports Sci. 1994;12:43–50.

    CAS  Google Scholar 

  30. Clarke ND, Drust B, Maclaren DP, Reilly T. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol. 2008;104(6):1069–77.

    CAS  PubMed  Google Scholar 

  31. Close GL, Sale C, Baar K, Bermon S. Nutrition for the prevention and treatment of injuries in track and field athletes. Int J Sport Nutr Exerc Metab. 2019;24:1–26. https://doi.org/10.1123/ijsnem.2018-0290 (Epub ahead of print).

    Article  Google Scholar 

  32. Cockburn E, Hayes PR, French DN, Stevenson E, Gibson SCA. Acute milk-based protein-CHO supplementation attenuates exercise induced muscle damage. Appl Physiol Nutr Metab. 2008;33(4):775–83.

    CAS  PubMed  Google Scholar 

  33. Coombes J, Hamilton K. The effectiveness of commercially available sports drinks. Sports Med. 2000;29(3):181–209.

    CAS  PubMed  Google Scholar 

  34. Coyle E. Timing and method of increased carbohdyrate intake to cope with heavy training, competition and recovery. J Sports Sci. 1991;9:29–52.

    PubMed  Google Scholar 

  35. Deakin V. Training nutrition. Bruce: University of Canberra and the Australian Institute of Sport, National Sports Research Centre; 1994.

    Google Scholar 

  36. Draganidis D, Chatzinikolaou A, Jamurtas AZ, Carlos Barbero J, Tsoukas D, Theodorou AS, et al. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity. J Sports Sci. 2013;31(7):714–22. https://doi.org/10.1080/02640414.2012.746725.

    Article  PubMed  Google Scholar 

  37. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(Suppl 1):S79–85.

    PubMed  Google Scholar 

  38. Di Salvo V, Pigozzi F. Physical training of football players based on their positional roles in the team. J Sports Med Phys Fitness. 1998;38:294–7.

    PubMed  Google Scholar 

  39. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. Int J Sports Med. 2009;30(3):205–12.

    Google Scholar 

  40. Ebeling P, Bourey R, Koranyi L, Tuominen JA, Groop LC, Henriksson J, et al. Mechanism of enhanced insulin sensitivity in athletes Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. J Clin Investig. 1993;92(4):1623–31.

    CAS  PubMed  Google Scholar 

  41. FIFA, 2016. [Online] http://www.fifa.com. Accessed 20 Aug 2018.

  42. Flatt JP. Carbohydrate balance and food intake regulation. Am J Clin Nutr. 1995;62(1):155–7.

    CAS  PubMed  Google Scholar 

  43. Foskett A, Williams C, Boobis L, Tsintzas K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc. 2008;40(1):96–103.

    CAS  PubMed  Google Scholar 

  44. Garcia-Roves P, Garcia-Zapico P, Patterson A, Iglesias-Gutierrez E. Nutrient intake and food habits of soccer players: analysing the correlates of eating practice. Nutrients. 2014;6:2697–717.

    PubMed  PubMed Central  Google Scholar 

  45. Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ortenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 2014;46:496–505.

    CAS  PubMed  Google Scholar 

  46. Hawley J, Dennis S, Noakes T. Carbohydrate, fluid, and electrolyte requirements of the soccer player: a review. Int J Sport Nutr. 1994;4:221–36.

    CAS  PubMed  Google Scholar 

  47. Hawley J, Tipton K, Millard-Stafford M. Promoting training adaptations through nutritional interventions. J Sports Sci. 2006;24:709–21.

    PubMed  Google Scholar 

  48. Highton J, Twist C, Lamb K, Nicholas C. Carbohydrate-protein co-ingestion improves multiple-sprint running performance. J Sports Sci. 2013;31:361–9.

    PubMed  Google Scholar 

  49. Ho CF, Jiao Y, Wei B, Yang Z, Wang HY, Wu YY, et al. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition. 2018;53:34–7.

    CAS  PubMed  Google Scholar 

  50. Holway F, Spriet L. Sport-specific nutrition: practical strategies for team sports. J Sports Sci. 2011;29:115–25.

    Google Scholar 

  51. Hulton AT, Gregson W, Maclaren D, Doran DA. Effects of GI meals on intermittent exercise. Int J Sports Med. 2012;33(9):756–62.

    CAS  PubMed  Google Scholar 

  52. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64:1480–5.

    CAS  PubMed  Google Scholar 

  53. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34(3):362–6.

    CAS  PubMed  Google Scholar 

  54. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    PubMed  Google Scholar 

  55. Jeukendrup AE. Training the Gut for Athletes. Sports Med. 2017;47(Suppl 1):101–10. https://doi.org/10.1007/s40279-017-0690-6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jonnalagadda S, Rosenbloom C, Skinner R. Dietary practices, attitudes, and physiological status of collegiate freshman football players. J Strength Cond Res. 2001;15:507–13.

    CAS  PubMed  Google Scholar 

  57. Jouris KB, McDaniel JL, Weiss EP. The effect of Omega-3 fatty acid supplementation on the inflammatory response to eccentric exercise. J Sci Med Sport. 2011;10(3):432–8.

    Google Scholar 

  58. Juzwiak C, Ancona-Lopez F. Evaluation of nutrition knowledge and dietary recommendations by coaches of adolescent Brazilian athletes. Int J Sport Nutr Exerc Metab. 2004;14:222–35.

    PubMed  Google Scholar 

  59. Karp JR, Johnston JD, Tecklenburg S, Mickleborough TD, Fly AD, Stager JM. Chocolate milk as a post-exercise recovery aid. Int J Sport Nutr Exerc Metab. 2006;16(1):78–91.

    PubMed  Google Scholar 

  60. Keizer H, Kuipers H, Van Kranenburg G, Guerten P. Influence of fluid and solid meals on muscle glycogen re-synthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1986;8:99–104.

    Google Scholar 

  61. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17. https://doi.org/10.1186/1550-2783-5-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krustrup P, Mohr M, Ellingsgaard H, Bangsbo J. Physical demands during an elite female soccer game: importance of training status. Med Sci Sports Exerc. 2005;37:1242–8.

    PubMed  Google Scholar 

  63. Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.

    CAS  PubMed  Google Scholar 

  64. Lemon P. Protein requirements for soccer. J Sports Sci. 1994;12:17–22.

    Google Scholar 

  65. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001;280(6):E982–93.

    CAS  PubMed  Google Scholar 

  66. Little JP, Chilibeck PD, Ciona D, Forbes S, Rees H, Vanderberg A, et al. Effect of low- and high-glycaemic index meals on metabolism and performance during high intermittent exercise. Int J Sports Nutr Exerc Metab. 2010;20(6):447–56.

    CAS  Google Scholar 

  67. Mascio M, Bradley P. Evaluation of the most intense high-intensity running period in English FA premier league soccer matches. J Strength Cond Res. 2013;27(4):909–15.

    PubMed  Google Scholar 

  68. Maughan R, Shirreffs S. Nutrition and hydration concerns of the female football player. Br J Sports Med. 2007;41:60–3.

    Google Scholar 

  69. Maughan R, Shirreffs S. Nutrition for Soccer players. Curr Sports Med Rep. 2007;6:279–80.

    PubMed  Google Scholar 

  70. Millard-Stafford M, Warren GL, Thomas LM, Doyle JA, Snow T, Hitchcock K. Recovery from run training: efficacy of a carbohydrate-protein beverage? Int J Sport Nutr Exerc Metab. 2005;15(6):610–24.

    CAS  PubMed  Google Scholar 

  71. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21:519–28.

    PubMed  Google Scholar 

  72. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci. 2005;23:593–9.

    PubMed  Google Scholar 

  73. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol Ser A Biol Sci Med Sci. 2015;70(1):57–62.

    CAS  Google Scholar 

  74. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part 2: recovery strategies. Sports Med. 2013;43(1):9–22.

    PubMed  Google Scholar 

  76. Nicholas C, Tsintzas K, Boobis L, Williams C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc. 1999;31:1280–6.

    CAS  PubMed  Google Scholar 

  77. Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000;10(3):123–45.

    CAS  PubMed  Google Scholar 

  78. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.

    CAS  PubMed  Google Scholar 

  79. O’Donoghue P, Boyd M, Lawlor J, Bleakley E. Time-motion analysis of elite, semi-professional and amateur soccer competition. J Hum Mov Stud. 2001;41:1–12.

    Google Scholar 

  80. Ono M, Kennedy E, Reeves S, Cronin L. Nutrition and culture in professional football. A mixed method approach. Appetite. 2012;58:98–104.

    PubMed  Google Scholar 

  81. Packer JE, Wooding DJ, Kato H, Courtney-Martin G, Pencharz PB, Moore DR. Variable-intensity simulated team-sport exercise increases daily protein requirements in active males. Front Nutr. 2017;4:64.

    PubMed  PubMed Central  Google Scholar 

  82. Parr EB, Camera DM, Areta JL, Burke LM, Phillips SM, Hawley JA, et al. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PLoS ONE. 2014;9(2):e88384.

    PubMed  PubMed Central  Google Scholar 

  83. Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5):655–70. https://doi.org/10.1007/s40279-013-0137-7.

    Article  PubMed  Google Scholar 

  84. Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41(5):565–72.

    CAS  PubMed  Google Scholar 

  85. Phillips SM, Hartman JW, Wilkinson SB. Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005;24(2):134S–9S. Review.

    PubMed  Google Scholar 

  86. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80(11):1045–53.

    CAS  PubMed  Google Scholar 

  87. Phillips S, Sproule J, Turner A. Carbohydrate ingestion during team games exercise. Sports Med. 2011;41(7):559–85.

    PubMed  Google Scholar 

  88. Poulios A, Fatouros IG, Mohr M, Draganidis D, Deli CK, Papanikolaou K, et al. Post-game high protein intake may improve recovery of football-specific performance during a congested game fixture: results from the PRO-FOOTBALL study. Nutrients. 2018. https://doi.org/10.3390/nu10040494.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ranchordas MK, Dawson JT, Russell M. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. J Int Soc Sports Nutr. 2017;12(14):35.

    Google Scholar 

  90. Reilly T. Physiological profile of the player. Football (soccer). London: Blackwell; 1994.

    Google Scholar 

  91. Reilly T. The science of training—soccer. London: Routledge; 2007.

    Google Scholar 

  92. Res P. Recovery nutrition for football players. Sports Sci Exch. 2014;27(129):1–5.

    Google Scholar 

  93. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):1560–9.

    CAS  PubMed  Google Scholar 

  94. Rico-Sanz J, Frontera WR, Mole PA, Rivera MA, Rivera-Brown A, Meredith CN. Dietary and performance assessment of elite soccer players during a period of intense training. Int J Sports Nutr. 1998;8(8):230–41.

    CAS  Google Scholar 

  95. Rico-Sanz J, Zehnder M, Buchli R, Dambach M, Boutellier U. Muscle glycogen degradation during simulation of a fatiguing soccer match in elite soccer players examined non-invasively by C-MRS. Med Sci Sports Exerc. 1999;31(11):1587–93.

    CAS  PubMed  Google Scholar 

  96. Rollo I. Carbohydrate: the football fuel. Sports Exch Sci. 2014;27(127):1–8.

    Google Scholar 

  97. Rosenbloom CA, Jonnalagadda SS, Skinner R. Nutrition knowledge of collegiate athletes in a division I national collegiate athletic association institution. J Am Diet Assoc. 2002;102(3):418–20.

    PubMed  Google Scholar 

  98. Ruiz F, Irazusta A, Gil S, Irazusta J, Casis L, Gil J. Nutritional intake in soccer players of different ages. J Sports Sci. 2005;23(3):235–42.

    PubMed  Google Scholar 

  99. Shephard R. The energy needs of the soccer player. Clin J Sports Med. 1992;2:62–70.

    Google Scholar 

  100. Shephard R. Biology and medicine in soccer: an update. J Sports Sci. 1999;17:757–86.

    CAS  PubMed  Google Scholar 

  101. Shephard R, Leatt P. Carbohydrate and fluid needs of the soccer player. Sports Med. 1987;4(3):164–76.

    CAS  PubMed  Google Scholar 

  102. Sherman W, Costill D, Fink W, Miller J. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilisation during performance. Int J Sports Med. 1981;2(2):114–8.

    CAS  PubMed  Google Scholar 

  103. Shifflett B, Timm C, Kahanov L. Understanding of Athletes’ nutritional needs among athletes, coaches, and athletic trainers. Res Q Exerc Sport. 2002;73(3):357–62.

    PubMed  Google Scholar 

  104. Smith JW, Holmes ME, McAllister MJ. Nutritional considerations for performance in young athletes. J Sports Med. 2015;2015:734649. https://doi.org/10.1155/2015/734649.

    Article  Google Scholar 

  105. Sollie O, Jeppesen PB, Tangen DS, Jernerén F, Nellemann B, Valsdottir D, et al. Protein intake in the early recovery period after exhaustive exercise improves performance the following day. J Appl Physiol. 2018. https://doi.org/10.1152/japplphysiol.01132.2017.

    Article  PubMed  Google Scholar 

  106. Souglis A, Bogdanis GC, Chryssanthopoulos C, Apostolidis N, Geladas ND. Time course of oxidative stress, inflammation, and muscle damage markers for 5 days after a soccer match: effects of sex and playing position. J Strength Cond Res. 2018;32(7):2045–54.

    PubMed  Google Scholar 

  107. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, van Loon LJ, et al. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabetes. 2015;64(5):1615–20.

    CAS  PubMed  Google Scholar 

  108. Stevenson E, Williams C, Nute M. The influence of glycaemic index of breakfast and lunch on substrate utilisation during postprandial periods and subsequent exercise. Br J Nutr. 2005;93:885–93.

    CAS  PubMed  Google Scholar 

  109. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35:501–36.

    PubMed  Google Scholar 

  110. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92. https://doi.org/10.1152/japplphysiol.00076.2009.

    Article  CAS  PubMed  Google Scholar 

  111. Tipton K, Wolfe R. Protein and amino acids for athletes. J Sports Sci. 2004;22:65–79.

    PubMed  Google Scholar 

  112. van Loon LJ. Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr Metab Care. 2012;15(1):71–7. https://doi.org/10.1097/MCO.0b013e32834d617a.

    Article  CAS  PubMed  Google Scholar 

  113. Wagenmakers AJ, Brookes JH, Coakley JH, Reilly T, Edwards RH. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur J Appl Physiol Occup Physiol. 1989;59(3):159–67.

    CAS  PubMed  Google Scholar 

  114. Walsh M, Cartwright L, Corish C, Sugrue S, Wood-Martin R. The body composition, nutritional knowledge, attitudes, behaviours, and future education need of senior school-boy rugby players in Ireland. Int J Sport Nutr Exerc Metab. 2011;21(5):365–76.

    PubMed  Google Scholar 

  115. Wee S, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005;99:707–14.

    CAS  PubMed  Google Scholar 

  116. Williams JH. The science behind soccer nutrition. 2nd ed. Charleston: CreateSpace; 2012.

    Google Scholar 

  117. Williams M, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and exercise performance. J Strength Cond Res. 2003;17:12–9.

    PubMed  Google Scholar 

  118. Williams C, Rollo I. Carbohydrate nutrition and team sports. Sports Med. 2015;1:S13–22.

    Google Scholar 

  119. Wolfe RR. Skeletal muscle protein metabolism and resistance exercise. J Nutr. 2006;136(2):525S–8S.

    CAS  PubMed  Google Scholar 

  120. Wu C-L, Williams C. A low glycemic index meal before exercise improves running capacity in man. Int J Sports Nutr Exerc Metab. 2006;16:510–27.

    CAS  Google Scholar 

  121. Yang C, Jiao Y, Wei B, Yang Z, Wu JF, Jensen J, et al. Aged cells in human skeletal muscle after resistance exercise. Aging. 2018;10(6):1356–65.

    PubMed  PubMed Central  Google Scholar 

  122. Zehnder M, Rico-Sanz J, Kuhne G, Boutellier U. Re-synthesis of muscle glycogen after soccer specific performance examined by 13C-magnetic resonance spectroscopy in elite players. Eur J Appl Physiol. 2001;84:443–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Mc Naughton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruana Bonnici, D., Greig, M., Akubat, I. et al. Nutrition in Soccer: A Brief Review of the Issues and Solutions. J. of SCI. IN SPORT AND EXERCISE 1, 3–12 (2019). https://doi.org/10.1007/s42978-019-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0014-7

Keywords

Navigation