Skip to main content
Log in

A High-Order Scheme for Fractional Ordinary Differential Equations with the Caputo–Fabrizio Derivative

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we consider numerical solutions of fractional ordinary differential equations with the Caputo–Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The proposed method makes use of quadratic interpolation function in sub-intervals, which allows to produce fourth-order convergence. A rigorous stability and convergence analysis of the proposed scheme is given. A series of numerical examples are presented to validate the theoretical claims. Traditionally a scheme having fourth-order convergence could only be obtained by using block-by-block technique. The advantage of our scheme is that the solution can be obtained step by step, which is cheaper than a block-by-block-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akman, T., Yıldız, B., Baleanu, D.: New discretization of Caputo–Fabrizio derivative. Comput. Appl. Math. 37(3), 3307–3333 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Atangana, A., Alqahtani, R.: Numerical approximation of the space-time Caputo–Fabrizio fractional derivative and application to groundwater pollution equation. Adv. Differ. Equ. 2016(1), 156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atangana, A., Gómez-Aguilar, J.: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu. Numer. Methods Partial Differ. Equ. 34(5), 1502–1523 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atangana, A., Nieto, J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7(10), 1–7 (2015)

    Article  Google Scholar 

  7. Baffet, D., Hesthaven, J.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baffet, D., Hesthaven, J.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  11. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Djida, J., Area, I., Atangana, A.: Numerical computation of a fractional derivative with non-local and non-singular kernel. Math. Model. Nat. Phenom. 12(3), 4–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Firoozjaee, M., Jafari, H., Lia, A., Baleanu, D.: Numerical approach of Fokker–Planck equation with Caputo–Fabrizio fractional derivative using Ritz approximation. J. Comput. Appl. Math. 339, 367–373 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., et al.: Series solution for the time-fractional coupled mKdV equation using the homotopy analysis method. Math. Probl. Eng. 2016, (2016)

  16. Gómez-Aguilar, J.: Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A 465, 562–572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 343(5), 911–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Tang, Y., Vázquez, L.: Convergence analysis of a block-by-block method for fractional differential equations. Numer. Math. Theor. Methods Appl. 5(2), 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ke, R.H., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E), C488–C504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Z., Cheng, A., Li, X.: A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative. Appl. Math. Comput. 311, 361–374 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Z., Cheng, A., Li, X.: A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. Int. J. Comput. Math. 95(2), 396–411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. J. Sci. Comput. 34(6), A3039–A3056 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Acad. Press, New York (1999)

    MATH  Google Scholar 

  27. Saad, K.M., Khader, M.M., Gómez-Aguilar, J.F., Baleanu, Dumitru: Numerical solutions of the fractional Fisher’s type equations with Atangana–Baleanu fractional derivative by using spectral collocation methods. Chaos 29(2), 023116 (2019). https://doi.org/10.1063/1.5086771

    Article  MathSciNet  MATH  Google Scholar 

  28. Shah, N., Khan, I.: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur. Phys. J. C 76, 362 (2016)

    Article  Google Scholar 

  29. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  32. Yang, X., Machado, J.: A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A 481, 276–283 (2017)

    Article  MathSciNet  Google Scholar 

  33. Yang, J., Huang, J., Liang, D., Tang, Y.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652–3661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77, 283–307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Q., Zhang, J., Jiang, S., Zhang, Z.: Numerical solution to a linearized time fractional KdV equation on unbounded domains. Math. Comp. 87(310), 693–719 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanju Xu.

Additional information

This research was supported by the National Natural Science Foundation of China (Grant numbers 11501140, 51661135011, 11421110001, and 91630204) and the Foundation of Guizhou Science and Technology Department (No. [2017]1086). The first author would like to acknowledge the financial support by the China Scholarship Council (201708525037).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wang, Z. & Xu, C. A High-Order Scheme for Fractional Ordinary Differential Equations with the Caputo–Fabrizio Derivative. Commun. Appl. Math. Comput. 2, 179–199 (2020). https://doi.org/10.1007/s42967-019-00043-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00043-8

Keywords

Mathematics Subject Classification

Navigation