Moss-inhabiting diatoms as ecological indicators in Neora Valley National Park (Eastern Himalaya), India

Abstract

Terrestrial mosses which retain moisture provide a suitable ambience for diatoms colonization and suitable experimental platforms for observing climate change impact. The distribution and diversity patterns of such epibryic diatom communities are governed by various biotic and abiotic factors of moss habitats. The present study is first of ever attempt to investigate the moss-inhabiting diatoms in relation to various abiotic environmental variables from the Indian Himalayan Region (IHR). Samples were collected from 23 different sites in the Neora Valley National Park in Eastern Himalayas and analyzed through standard methods. Two-way indicator species analysis (TWINSPAN) and cluster analysis (CA) performed to classify the samples and habitats while direct canonical correspondence analysis (CCA) was used to determine the linkage between moss-inhabiting diatom species from various sample and abiotic environmental gradients. A total of 27 diatoms found colonizing on terrestrial moss patches from 23 sites of the park. CCA ordination plots showed that pH, conductivity and relative humidity were the primary factors influencing the diatom diversity and distribution, but altitude and temperature had no influence on the species distribution. But, correlation study on the average valve length of the most abundant and frequent taxa of Neora Valley National Park, i.e. Eunotia paludosa, E. bigibba and Hantzschia amphioxys, in relation to the environmental variables like, altitude, moisture content, relative humidity and temperature revealed a significant inference. The average valve length of these three diatoms decreases in warmer and drier climatic conditions at lower altitudes. Thus, these can be considered as potential indicator species to observe any climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adams GL, Pichler DE, Cox EJ, O’Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be important exception to temperature-size rules at species and community levels of organization. Glob Chang Biol 19:3540–3552. https://doi.org/10.1111/gcb.12285

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alfinito S, Fumanti B, Cavacini P (1998) Epiphytic algae on mosses from Northern Victoria Land (Antarctica). Nova Hedwigia 66:473–480

    Google Scholar 

  3. Ando K (1978) Moss diatoms in Japan (2). Jap J Phycol 26(3):125–130

    Google Scholar 

  4. Barral-Fraga L, Morin S, Rovira MDM, Urrea G, Magellan K, Guasch H (2016) Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environ Sci Pollut Res 23:4257–4270. https://doi.org/10.1007/s11356-015-4894-8

    CAS  Article  Google Scholar 

  5. Bathrust RR, Zori D, Byock J (2010) Diatoms as bioindicators of site use: locating turf structures from the Viking Age. J Archaeol Sci 37:2920–2928. https://doi.org/10.1016/j.jas.2010.07.002

    Article  Google Scholar 

  6. Bertrand J, Renon JP, Monnier O, Ector L (2004) Relationship “epiphytic diatoms—Bryophytes” at Mount Lozére peat bogs (France). Vie Milien 54:59–70

    Google Scholar 

  7. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Towards a metabolic theory of ecology. Ecology 85:1771–1789. https://doi.org/10.1890/03-9000

    Article  Google Scholar 

  8. Buczkó K (2006) Bryophytic diatoms from Hungary. In: Witkowski A (ed.) Proceedings of the international diatom symposium 2004, Miedzyzdroje, Poland, pp 1–15

  9. Buczkó K, Wojtal A (2005) Moss inhabiting siliceous algae from Hungarian peat bogs. Stud Bot Hung 36:21–42

    Google Scholar 

  10. Buzas MA, Gibson TG (1969) Species diversity: Benthonic foraminifera in the Western North Atlantic. Science 163:72–75. https://doi.org/10.1126/science.163.3862.72

    CAS  Article  PubMed  Google Scholar 

  11. Cantonati A (2001) The diatom communities of the liverwort Chiloscyphus polyanthos var. rivularis in a mountain spring-fed stream in the Adamello-Brenta Regional Park, Northern Italy. In: Jahn R, Kociolek JP, Witkowski A, Compère P (eds) Lange-Bertalot-Festschrift: studies on Diatoms. A.R.G. Gantner Verlag, K.G., Rugell, pp 353–368

    Google Scholar 

  12. Cantonati M, Spitale D (2009) The role of environmental variables in structuring epiphytic and epilithic diatom assemblages in springs and streams of the Dolomiti Bellunesi National Park (South-eastern Alps). Fund Appl Limnol 174:117–133. https://doi.org/10.1127/1863-9135/2009/0174-0117

    CAS  Article  Google Scholar 

  13. Cantonati M, Angeli N, Virtanea L, Wojtal AZ, Gabriell J, Falasco E, Lavoie I, Morin S, Marchetto A, Fortin C, Smirnova S (2014) Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Sci Total Environ 475:201–215. https://doi.org/10.1016/j.scitotenv.2013.10.018

    CAS  Article  PubMed  Google Scholar 

  14. Cattaneo A, Couillard Y, Wunsam S, Courcelle M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32:163–175. https://doi.org/10.1023/B:JOPL.0000029430.78278.a5

    Article  Google Scholar 

  15. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    CAS  Article  Google Scholar 

  16. Chen X, Bu Z, Yang X, Wang S (2012) Epiphytic diatoms and their relation to moisture and moss composition in two montane mires. Northeast China Fund Appl Limnol 181(3):197–206. https://doi.org/10.1127/1863-9135/2012/0369

    Article  Google Scholar 

  17. Chen X, Qin Y, Stevenson MA, McGowan S (2014) Diatom communities along pH and hydrological gradients in three montane mires, Central China. Ecol Indic 45:123–129. https://doi.org/10.1016/j.ecolind.2014.04.016

    CAS  Article  Google Scholar 

  18. Chen X, Zhou W, Pickett STA, Li W, Han L, Ren Y (2016) Diatoms are better indicators of urban stream conditions: a case study in Beijing, China. Ecol Indic 60:265–274. https://doi.org/10.1016/j.ecolind.2015.06.039

    CAS  Article  Google Scholar 

  19. Das SK, Radhakrishnan C, Kociolek JP, Karthick B (2018) Three new species of Gomphonema Ehrenberg (Bacillariophyta), from Eastern Himalayas, with a note on the unique girdle band structure. Nova Hedwigia 147:359–371. https://doi.org/10.1127/nova-suppl/2018/025

    Article  Google Scholar 

  20. Drebes G (1977) Sexuality. In: Warner D (ed) The biology of diatoms. Botanical monograph 13. Blackwell Science Publications, Oxford, pp 250–283

    Google Scholar 

  21. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  22. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Nat Acad Sci 109:19310–19314. https://doi.org/10.1073/pnas.1210460109

    Article  PubMed  Google Scholar 

  23. Gangulee HC (1969–1980) Mosses of Eastern India and adjacent regions. Fascicles 1–8. Book & Allied Limited, Calcutta

  24. Gensemer RW, Smith REH, Duthie HC (1995) Interactions of pH and Aluminum on cell length reduction in Asterionella ralfsii var. americana Körner. In: Marino D, Montresor M (eds) Proceedings of the 13th international diatom symposium 1994, Koeltz Scientific Books Königstein, Acquafredda di Maratea, Italy, pp 39–46

  25. Gremmen NJM, Van de Vijver B, Frenot Y, Lebouvier M (2007) Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarct Sci 19(1):17–24. https://doi.org/10.1017/S0954102007000041

    Article  Google Scholar 

  26. Hammer O, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  27. Hickman M, Vitt DH (1973) The aerial epiphytic diatom flora of moss species from Subantarctic Campbell Island. Nova Hedwigia 24:443–458

    Google Scholar 

  28. Hill MO, Šmilauer P (2005) TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice

  29. Johansen JR (2004) Diatoms of aerial habitats. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 264–276

    Google Scholar 

  30. Kopalová K, Ochyra R, Nedbalová L, Van de Vijver B (2014) Moss-inhabiting diatoms from two contrasting Maritime Antarctic islands. Plant Ecol Evol 147(1):67–84. https://doi.org/10.5091/plecevo.2014.896

    Article  Google Scholar 

  31. Krammer K (2002) Cymbella. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 3. A.R.G. Gantner Verlag K.G., Rugell, pp 1–584

    Google Scholar 

  32. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/1. Gustav Fischer Verlag, Stuttgart, pp 1–876

    Google Scholar 

  33. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer Verlag, Stuttgart, pp 1–596

    Google Scholar 

  34. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer Verlag, Stuttgart, pp 1–598

    Google Scholar 

  35. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer Verlag, Stuttgart, pp 1–437

    Google Scholar 

  36. Kulikovskiy M (2008) The species composition and distribution of diatoms in Sphagnum bogs of European Russia: ecosystems of the volge upland. Inland Water Biol 1:347–355. https://doi.org/10.1134/S1995082908040068

    Article  Google Scholar 

  37. Lange-Bertalot H (2001) Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 2. A.R.G. Gantner Verlag, Rugell, pp 1–235

    Google Scholar 

  38. Lange-Bertalot H, Bak M, Witkowski A (2011) Eunotia and some related genera. In: Lange-Bertalot H (ed) Diatoms of Europe. A.R.G. Gantner Verlag K.G., Rugell, pp 237–254

    Google Scholar 

  39. Lotter AF, Pienitz R, Schmidt R (2004) Diatoms as indicators of environmental change near arctic and alpine treeline. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 205–226

    Google Scholar 

  40. Luis AT, Teixeira P, Almeida SFP, Ector L, Matos JX, Ferreira da Silva EA (2011) Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal contaminated stream sediments and surface water of Corona stream. Sci Total Environ 409:4312–4325. https://doi.org/10.1016/j.scitotenv.2011.06.052

    CAS  Article  PubMed  Google Scholar 

  41. Lund JWG (1945) Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. Part 1. New Phytol 44:196–219. https://doi.org/10.1111/j.1469-8137.1945.tb05033.x

    Article  Google Scholar 

  42. Margalef R (1958) Information theory in ecology. Int J Gen Sys 3:36–71

    Google Scholar 

  43. Mayama S (1993) Eunotia sparsistriata sp. nov., a moss diatom from Mikura Island. Japan Nova Hedwigia 106:143–150

    Google Scholar 

  44. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data. Version 4.34. MjM Software, Gleneden Beach, Oregon

  45. Morin S, Coste M (2006) Metal-induced shifts in the morphology of diatoms from the Riou Mort and Riou Viou streams (South West France). In: Ács É, Kiss KT, Padisák J, Szabó K (eds) Use of algae for monitoring rivers VI. Hungarian Algological Society, Göd, Balaton füred, Hungary, pp 91–106

    Google Scholar 

  46. Nováková J, Pouličková A (2004) Moss diatom (Bacillariophyceae) flora of the Nature Reserve Adršpašsko-Teplické rocks (Czech Republic). Czech Phycol 4:75–86

    Google Scholar 

  47. Palmer MW (1990) The estimation of species richness by extrapolation. Ecology 71:1195–1198. https://doi.org/10.2307/1937387

    Article  Google Scholar 

  48. Palmer MW (1991) Estimating species richness: The second-order jackknife reconsidered. Ecology 72:1512–1513. https://doi.org/10.2307/1941127

    Article  Google Scholar 

  49. Pandey LK, Bergey EA (2016) Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from Chronically metal (Cu, Zn) polluted water bodies as a biomonitoring tool. Sci Total Environ 550:372–381. https://doi.org/10.1016/j.scitotenv.2015.11.151

    CAS  Article  PubMed  Google Scholar 

  50. Petersen JB (1934) The algal vegetation of Hammer Bakker. Bot Tidsskr 42:1–48

    Google Scholar 

  51. Potapova M, Snoeijs P (1997) The natural life cycle in wild populations of Diatoma moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. J Phycol 33:924–937. https://doi.org/10.1111/j.0022-3646.1997.00924.x

    Article  Google Scholar 

  52. Pouličková A, Hajková P, Křenková P, Hajek M (2004) Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia 78:411–424. https://doi.org/10.1127/0029-5035/2004/0078-0411

    Article  Google Scholar 

  53. Reid MA, Gell PA, Tibby JC, Penny D (1995) The use of diatoms to assess past and present water quality. Aust J Ecol 20:57–64. https://doi.org/10.1111/j.1442-9993.1995.tb00522.x

    Article  Google Scholar 

  54. Ress JA, Lowe RL (2014) Bryophytes and associated algal communities from an exposed cliff face on O’ahu (Hawai’i, USA). Algol Stud 144:45–72. https://doi.org/10.1127/1864-1318/2014/0117

    Article  Google Scholar 

  55. Rott E (1991) Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In: Whitton BA, Rott E, Friedrich G (eds) Use of algae for monitoring Rivers. Institut für Botanik, Universität Innsbruck, Innsbruck, pp 9–16

    Google Scholar 

  56. Round FE (1957) The diatom community of some bryophyta growing on sandstone. Bot J Linn Soc 55:657–661. https://doi.org/10.1111/j.1095-8339.1957.tb00028.x

    Article  Google Scholar 

  57. Round FE, Crawford RM, Mann DG (1990) The Diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  58. Rybak M, Noga T, Zubel R (2018) The aerophytic diatom assemblages developed on mosses covering the bark of Populus alba L. J Ecol Eng 19(6):113–123. https://doi.org/10.12911/22998993/92673

    Article  Google Scholar 

  59. Shannon CE, Wiener WE (1963) The mathematical theory of communities. University of Illinois Press, Urbana

    Google Scholar 

  60. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Chang 1:401–406. https://doi.org/10.1038/nclimate1259

    Article  Google Scholar 

  61. Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 32:676–679. https://doi.org/10.1126/science.1183517

    CAS  Article  Google Scholar 

  62. Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  63. Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental & earth sciences. Cambridge University Press, New York

    Google Scholar 

  64. Snoeijs P, Brusse S, Potapova M (2002) The importance of diatom cell size in community analysis. J Phycol 38:265–272. https://doi.org/10.1046/j.1529-8817.2002.01105.x

    Article  Google Scholar 

  65. Szulc K, Besenyei L, Szulc B, Rakowska B (2014) Diatomological aspects of the Fenn’s and Whixall Mosses complex (Shropshire, UK). Oceanol Hydrobiol St 43(3):274–282. https://doi.org/10.2478/s13545-014-0142-y

    Article  Google Scholar 

  66. Van Dam H, Martens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28(1):117–133. https://doi.org/10.1007/BF02334251

    Article  Google Scholar 

  67. Van de Vijver B, Beyens L (1997) The epiphytic diatom flora of mosses from Stromness Bay area, South Georgia. Polar Biol 17:492–501. https://doi.org/10.1007/s003000050148

    Article  Google Scholar 

  68. Van de Vijver B, Beyens L (1999) Moss diatom communities from Ile de la Possession (Crozet, Subantarctica) and their relationship with moisture. Polar Biol 22:219–231. https://doi.org/10.1007/s003000050414

    Article  Google Scholar 

  69. Wadmare N, Roy S, Kociolek JP, Karthick B (2019) Two new aerophilic species of Stauroneis Ehrenberg (Bacillariophyta) from the Eastern Himalayas. Bot Lett. https://doi.org/10.1080/23818107.2019.1602786

    Article  Google Scholar 

  70. Watanabe MM, Mayama S, Hiroki M, Nozak HI (2000) Biomass, species composition and diversity of epipelic algae in mire pools. Hydrobiologia 421:91–102. https://doi.org/10.1023/A:1003939824549

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Director of Botanical Survey of India for facilities and encouragement. Dr. Karthick Balasubramanian, Agharkar Research Institute, Pune is also thanked for his help in processing of diatom samples and identification. This research was supported by Ministry of Environment, Forests and Climate Change, Govt. of India through National Mission on Himalayan Studies scheme (NMHS/2015-16/LG-05). We are also thankful to the anonymous reviewers for their constructive suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudhansu Sekhar Dash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Microphotographs of the moss-aasociated diatoms from Neora Valley National Park (1) Caloneis cf. clevei; (2) Cocconeis placentula var. euglypta; (3) Cymbella affinis; (4) Encyonema pergracile; (5) E. bigibba; (6) E. curtagrunowii; (7) Eunotia arcus; (8) E. paludosa; (9) Eunotia sp.; (10) Gomphonema amoenum; (11) G. insigne; (12) G. parvulum; (13) Gomphonema sp.; (14) Hantzschia amphioxys; (15) Humidophila sp.; (16) Luticola goeppertiana; (17) L. muticoides; (18) L. nipkowii; (19) L. plausibilis; (20) Navicula elginensis; (21) Psammothidium cf. acidoclinatum; (22) Orthoseira dendrophila; (23) O. roeseana; (24) Pinnularia borealis; (25) P. conica; (26) N. veneta; (27) Stauroneis sp. (Scale bar: 1-27 = 10 µm) (JPG 699 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Rawat, D.S., Dash, S.S. et al. Moss-inhabiting diatoms as ecological indicators in Neora Valley National Park (Eastern Himalaya), India. Trop Ecol (2020). https://doi.org/10.1007/s42965-020-00083-9

Download citation

Keywords

  • Diatom community
  • Epibryic
  • Eastern Himalaya
  • Indicator species
  • Neora Valley National Park
  • Valve length