Skip to main content

Advertisement

Log in

Challenges and opportunities for agricultural sustainability in changing climate scenarios: a perspective on Indian agriculture

  • Review Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Increasing population and related food demand always remain the most imperative challenges for the developing world. It could only be attained by an increased agricultural production based on external inputs like mineral fertilizers and pesticides during the twentieth century. The green revolution-based modern agricultural practices have resulted in the substantial increase in grain yield at the cost of natural resource degradation. The externalisation of agriculture led to a considerable decline in soil fertility and environmental resilience. It calls for a different approach which should educate the farmers to utilise their traditional knowledge to produce more grains using less external inputs. This approach is known as sustainable agriculture which is the need of the hour, at present. The sustainable agriculture practices are derived from the amalgamation of traditionally adapted healthy practices with a modern development of agricultural systems. Thus, sustainable agricultural practices are supposed to be resource-conservative and resilient to the present climate change scenario. Moreover, a higher proportion of traditional inputs either in the form of resources or the knowledge may encompass the socio-economic balance among different societies. In this review, a brief insight has been given on the concept of sustainable agriculture, its need in the present scenario and a critical assessment in terms of challenges and opportunities for overall sustainability in developing nations by considering India as a model country. How the integration of traditional knowledge and modern agriculture practices will improve the agricultural productivity, soil quality and health as well as socio-economic balance, has also been discussed in terms of research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiven S, Menassero S, Chenu C (2009) The effect of organic inputs over time on soil aggregate stability—a literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Abo-Rekab ZA, Darwesh RSS, Hassan N (2010) Effect of arbuscular mycorrhizal fungi, NPK complete fertilizers on growth and concentration nutrients of acclimatized date palm plantlets. Mesopot J Agric 38:9–19

    Google Scholar 

  • Abrol IP, Sangar S (2006) Sustaining Indian agriculture—conservation agriculturethe way forward. Curr Sci 91:1020–1025

    Google Scholar 

  • Agarwal A, Prajapati R, Singh OP, Raza SK, Thakur LK (2015) Pesticide residue in water—a challenging task in India. Environ Monit Assess 54:187

    Google Scholar 

  • Alrøe HF, Moller H, Læssøe J, Noe E (2016) Opportunities and challenges for multicriteria assessment of food system sustainability. Ecol Soc. https://doi.org/10.5751/ES-08394-210138

    Article  Google Scholar 

  • Arora S, Bhatt R (2016) Resource conservation technologies (RCTs) for climate-resilient agriculture in the foothill of Northwest Himalayas. Conservation agriculture. Springer, Singapore, pp 71–111

    Chapter  Google Scholar 

  • Arulbalachandran D, Mullainathan L, Latha S (2017) Food Security and sustainable agriculture. Sustainable agriculture towards food security. Springer, Singapore, pp 3–13

    Chapter  Google Scholar 

  • Atkinson D, Baddely JA, Goicoechea N, Green J, Sanchez-Diaz M, Watson CA (2002) Arbuscular mycorrhizal fungi in low input agriculture. In: Gianinazzi SH, Schüepp JM, Haselwandtler K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Berlin, pp 211–222

    Chapter  Google Scholar 

  • Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Aviles-Vazquez K, Samulon A, Perfecto I (2007) Organic agriculture and the global food supply. Renew Agric Food Syst 22:86–108

    Article  Google Scholar 

  • Bakshi M, Singh HB, Abhilash PC (2014) The unseen impact of nanoparticles: more or less? Curr Sci 106:350–352

    Google Scholar 

  • Balamatti A, Uphoff N (2017) Experience with the system of rice intensification for sustainable rainfed paddy farming systems in India. Agroecol Sustain Food Syst 41:573–587

    Article  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15:261–282

    CAS  Google Scholar 

  • Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. CRC, Boca Raton

    Book  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204. https://doi.org/10.1007/s10311-009-0228-8

    Article  CAS  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauve S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaduri D, Purakayastha TJ, Patra AK, Singh M, Sarkar S (2014) Combined effect of tillage-water-nutrient management under rice-wheat agro-ecosystem: a study on chemical indicators of soil quality. Agrochimica 58:63–76

    CAS  Google Scholar 

  • Bhaduri D, Pal S, Purakayastha TJ, Chakraborty K, Yadav RS, Akhtar MS (2015) Soil quality and plant-microbe interactions in the rhizosphere. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Heidelberg, pp 307–335

    Chapter  Google Scholar 

  • Bhan S, Behera UK (2014) Conservation agriculture in India—problems, prospects and policy issues. Int Soil Water Conserv Res 2:1–12

    Article  Google Scholar 

  • Bhattacharjee JC, Roychaudhury C, Landey RJ, Pandey S (1982) Bioclimatic analysis of India. NBSSLUP Bulletin 7, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India, p21 + map

  • Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Borthakur A, Singh P (2013) History of agricultural research in India. Curr Sci 105:587–593

    Google Scholar 

  • Bose B, Mondal S (2013) Climate change and sustainable agriculture in context to seed priming and role of nitrate. Vegetos nt J Plant Res 26:192–204

    Article  Google Scholar 

  • Brevik EC (2013) Soils and human health—an overview. In: Brevik EC, Burgess LC, Raton B (eds) Soils and human health. CRC, Boca Raton, pp 29–56

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Nat Acad Sci USA 107:12052–12057. https://doi.org/10.1073/pnas.0914216107

    Article  PubMed  Google Scholar 

  • Calzadilla A, Rehdanz K, Betts R, Falloon P, Wiltshire A, Tol RSJ (2013) Climate change impacts on global agriculture. Clim Change 120:357–374. https://doi.org/10.1007/s10584-013-0822-4

    Article  Google Scholar 

  • Cassman KG, Doebermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environment quality. Ann Rev Environ Resour 28:315–358

    Article  Google Scholar 

  • Chai Y, Ma S, Zeng XES, Che Z, Li L, Duan R, Su S (2015) Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China. J Plant Nutr Soil Sci 178:622–630

    Article  CAS  Google Scholar 

  • Chel A, Kaushik G (2011) Renewable energy for sustainable agriculture. Agron Sust Develop 31:91–118

    Article  Google Scholar 

  • Cheng K, Pan G, Smith P et al (2011) Carbon footprint of China’s crop production—an estimation using agro-statistics data over 1993–2007. Agric Ecosyst Environ 142:231–237

    Article  Google Scholar 

  • Chowdary VM, Rao NH, Sarma PBS (2005) Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agric Water Manage 75:194–225

    Article  Google Scholar 

  • Clark WC, Dickson NM (2003) Sustainability science, the emerging research program. Proc Natl Acad Sci USA 100:8059–8061

    Article  CAS  PubMed  Google Scholar 

  • Corwin DL, Loague K, Ellsworth TR (1999) Assessing non-point source pollution in the vadose zone with advanced information technologies. In: Corwin DL, Loague K, Ellsworth TR (eds) Assessment of non-point source pollution in the vadose zone. Geophysical Monogr 108: AGU, Washington, DC, USA, pp 1–20

  • Dev MS (2012) Small farmers in India: Challenges and opportunities. WP-2012-014. http://www.igidr.ac.in/pdf/publication/WP-2012-014.pdf. Accessed 4 Jan 2019

  • Dhillon BS, Kataria P, Dhillon PK (2010) National food security vis-a-vis sustainability of agriculture in high crop productivity regions. Curr Sci 98:33–36

    Google Scholar 

  • Directorate of Economics & Statistics (2016) Agricultural statistics at a glance. http://eands.dacnet.nic.in/. Accessed 21 Aug 2017

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America Inc, Madison, pp 3–21

    Google Scholar 

  • Du T, Kang S, Zhang J, Davies WJ (2015) Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J Exp Bot 66:2253–2269. https://doi.org/10.1093/jxb/erv034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eagan S, Dhandayuthapani UN (2019) Organic agriculture: techniques to improve crop production. In eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Singapore, pp 1–24

    Google Scholar 

  • Economic Intelligence Unit (EIU) (2017) Global Food security Index. http://foodsecurityindex.eiu.com/, Accessed 20 Oct 2017

  • Ehrlich PR, Harte J (2015) Food security requires a new revolution. Int J Environ Stud 72:908–920. https://doi.org/10.1080/00207233.2015.1067468

    Article  Google Scholar 

  • Eitzinger J, Singh S, Singh D (2009) Impacts of climate change and variability on agriculture–Experience from Europe and India. J Agromet 11:24–32

    Google Scholar 

  • FAO (2011) Current world fertilizer trends and outlook to 2015. Food and Agricultural Organizations of United Nations, Rome, p 41

    Google Scholar 

  • FAO (2015) The state of food insecurity in the world 2015. Food and Agricultural Organizations of United Nations, Rome

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Zaks DPM et al (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  CAS  Google Scholar 

  • Galloway J, Raghuram N, Abrol YP (2008) A perspective on reactive nitrogen in a global, Asian and Indian context. Curr Sci 94:1375–1381

    CAS  Google Scholar 

  • Galvez L, Douds DD Jr, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Garcıa C, Hernandez T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–1191

    Article  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, El-Hage Scialabba N, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl A Sci USA 109:18226–18231

    Article  Google Scholar 

  • Ghosh PK, Das A, Saha R, Kharkrang E, Tripathy AK, Munda GC, Ngachan SV (2010) Conservation agriculture towards achieving food security in north East India. Curr Sci 99:915–921

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Global Agricultural Productivity (GAP) report (2014) Global revolutions in agriculture: the challenge and promise of 2050. Global Harvest Initiative, Washington, D.C. 2006, USA

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvements. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Government of India (GOI) (2014) All India Reports on Number and Area of Agricultural Holdings from 1976–77, 1980–81, 1990–91, 2000–01, 2005–06 and 2010–11. Agricultural Census Division, Department of Agriculture and Co-operation, New Delhi

  • Government of India (GOI) (2016) Annual Report 2016–17. Department of Animal Husbandry, Dairying & Fisheries Ministry of Agriculture and Farmers Welfare, Government of India

  • Grinsven HJM, Erisman JW, Vries W, Westhoek H (2015) Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environ Res Letters 10:025002. https://doi.org/10.1088/1748-9326/10/2/025002

    Article  Google Scholar 

  • Gryndler M, Hrselová H, Sudová R, Gryndlerová H, Rezácová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular fungus Glomus calaroideum BEG23 is stimulated by humic substances. Mycorrhiza 15:483–488

    Article  CAS  PubMed  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc B Biol Sci 363:543–555

    Article  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Indian Council for Agricultural Research (ICAR) (2010) Degraded and wastelands of India: status and spatial distribution. Indian Council for Agricultural Research, New Delhi

    Google Scholar 

  • INECC (2010) The semi-arid region (2010). http://www.ced.org.in/docs/inecc/aridçbooklet/Arid-3-Arids.pdf. Accessed 20 Apr 2014

  • International Fund for Agricultural Development (IFAD) (2012) Sustainable smallholder agriculture: feeding the world, protecting the planet. International Fund for Agricultural Development, Rome, p 12

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29

    Chapter  Google Scholar 

  • Jansson C, Wullschleger S, Kalluri U, Tuskan G (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696

    Article  Google Scholar 

  • Jat ML, Malik RK, Saharawat YS, Gupta R, Bhag M, Raj P (2012) Proceedings of regional dialogue on conservation agricultural in South Asia. New Delhi, India, APAARI, CIMMYT, ICAR, p. 32

  • Kaur S, Lubana PP, Aggarwal R (2013) Groundwater management for adaptation under changing climate conditions in Indian Punjab. J Water Clim Change 4:38–51

    Article  Google Scholar 

  • Kohli SS, Mitra BN (1987) Effects of azolla as an organic source of nitrogen in rice-wheat cropping systems. J Agron Crop Sci 159:212–215

    Article  Google Scholar 

  • Kolawole OD (2001) Local knowledge utilization and sustainable rural development in the 21st century. Indig Knowl Dev Monit 9:13–15

    Google Scholar 

  • Kumar P, Mittal S (2006) Agricultural productivity trends in India: sustainability issues. Agric Econ Res Rev 19:71–88

    Google Scholar 

  • Kumar R, Singh J (2003) Regional water management modeling for decision support in irrigated agriculture. J Irrig Drain Eng ASCE 129:432–439

    Article  Google Scholar 

  • Kumar M, Singh DP, Prabha R, Sharma AK (2015) Role of cyanobacteria in nutrient cycle and use efficiency in the soil. Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 163–171

    Chapter  Google Scholar 

  • Kumari T, Singh R, Verma P (2019) Agriculture, forests and environmental management trinity: towards environmental sustainability and climate change mitigation. Trop Ecol. https://doi.org/10.1007/s42965-019-00025-0

    Article  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12. https://doi.org/10.1016/j.envint.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2005) World crop residue production and implications of its use as biofuel. Environ Int 31:575–584

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2007) Managing soils for food security and climate change. J Crop Impr 19:49–71

    Article  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895. https://doi.org/10.3390/su7055875

    Article  CAS  Google Scholar 

  • Lal R (2016) Potential and challenges of conservation agriculture in sequestration of atmospheric CO2 for enhancing climate-resilience and improving productivity of soil of small landholder farms. CAB Rev 11:1–16

    Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29:1–6

    Article  Google Scholar 

  • Lobell DB, Baldos ULC, Hertel TW (2014) Climate adaptation as mitigation: the case of agricultural investments. Environ Res Lett 8:1–12. http://iopscience.iop.org/1748-9326/8/1/015012

  • Luo Z, Wang E, Sun OJ (2010) Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma 155:211–223

    Article  CAS  Google Scholar 

  • Mahajan A, Gupta RD (2009) Integrated Nutrient Management (INM) in a sustainable rice-wheat cropping system. Springer, New York. https://doi.org/10.1007/978-1-4020-9875-8

    Book  Google Scholar 

  • Mahapatra BS, Ramasubramanian T, Chowdhury H (2009) Organic farming for sustainable agriculture: global and Indian perspective. Indian J Agron 54:178–185

    Google Scholar 

  • Majumdar K, Dey P, Tewatia RK (2014) Current nutrient management approaches. Indian J Fertil 10:14–27

    CAS  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478

    Article  Google Scholar 

  • Mander U, Mikk M, Kulvik M (1999) Ecological and low intensity agricultureas contributors to landscape and biological diversity. Landsc Urban Plann 46:169–177

    Article  Google Scholar 

  • Meena VS, Sharma S (2015) Organic farming: a case study of Uttarakhand organic commodity board. J Indian Poll Con. http://www.icontrolpollution.com/articles/organic-farming-a-case-study-of-uttarakhand-organic-commodity-board-.php?aid=65718. Accessed 4 Jan 2019

  • Meena VS, Maurya BR, Bahadur I (2014) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being. Scenarios: findings of the scenarios working group, vol 2. Island, Washington, DC

    Google Scholar 

  • Ministry of Agriculture (2015) State of Indian agriculture. http://agricoop.nic.in/Annual%20report2012-13/ARE2012-13.pdf. Accessed 4 Jan 2019

  • Ministry of Home Affairs (2011) Government of India. http://censusindia.gov.in/2011-provresults/indiaatglance.html. Accessed 4 Jan 2019

  • Mishra A, Whitten M, Ketelaar JW, Salokhe V (2007) The system of rice intensification (SRI): a challenge for science, and an opportunity for farmer empowerment towards sustainable agriculture. Int J Agric Sustain 4:193–212

    Article  Google Scholar 

  • Mishra A, Kumar P, Noble A (2013) Assessing the potential of SRI management principles and the FFS approach in Northeast Thailand for sustainable rice intensification in the context of climate change. Intl J Agric Sustain 11:4–22. https://doi.org/10.1080/14735903.2012.658648

    Article  Google Scholar 

  • Mitra AP (1992) Greenhouse gas emission in India: 1991, Methane Campaign. Science Report No. 2, Council of Scientific and Industrial Research and Ministry of Environment & Forests, New Delhi, India

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Mohanty A, Wu Y, Cao B (2014) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 98:8457–8468

    Article  CAS  PubMed  Google Scholar 

  • Mtengeti EJ, Brentrup F, Mtengeti E, Eik LO, Chambuya R (2015) Sustainable intensification of Maize and Rice in smallholder farming systems under climate change in Tanzania. In: Lal R et al (eds) Sustainable intensification to advance food security and enhance climate resilience in Africa. Springer, Switerzerland, pp 441–465. https://doi.org/10.1007/978-3-319-09360-4_24

    Chapter  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Narwal SS (2010) Allelopathy in ecological sustainable organic agriculture. Allelopathy J 25:51–72

    Google Scholar 

  • Nath AJ, Lal R, Sileshi GW, Das AK (2018) Managing India’s small landholder farms for food security and achieving the “4 per Thousand” target. Sci Total Environ 634:1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Neelam AA, Gaur A, Bhalla E, Gupta SR (2010) Soil aggregate carbon and diversity of mycorrhiza as affected by tillage practices in a rice-wheat cropping system in northern India. Int J Ecol Environ Sci 36:233–243

    Google Scholar 

  • Nelson GC et al (2010) Food security, farming, and climate change to 2050: scenarios, results, policy options. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Olsson PA, Thinstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Pal DK, Wani SP, Sahrawat KL (2015) Carbon sequestration in Indian soils: present status and the potential. Proc Natl Acad Sci India Sect B Biol Sci 85:337–358. https://doi.org/10.1007/s40011-014-0351-6

    Article  CAS  Google Scholar 

  • Pandey C, Diwan H (2018) Integrated approach for managing fertilizer intensification linked environmental issues. Manag Environ Qual Int J 29:324–347

    Article  Google Scholar 

  • Paul B, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso T, Koala S, Lelei D, Ndabamenye T, Six J (2013) Medium-term impact of tillage and residuemanagement on soil aggregate stability, soil carbon and crop productivity. Agric Ecosyst Environ 164:14–22

    Article  Google Scholar 

  • Ponisio LC, M’Gonigle LK, Mace KC, Palomino J, de Valpine P, Kremen C (2015) Diversification practices reduce organic to conventional yield gap. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2014.1396

    Article  Google Scholar 

  • Prakash O, Sharma R, Rahi P, Karthikeyan N (2015) Role of microorganisms in plant nutrition and health. Nutrient use efficiency: from basics to advances 2015. Springer, New Delhi, pp 125–161

    Chapter  Google Scholar 

  • Pretty NJ (1995) Regenerating agriculture, policies and practices for sustainability and self-reliance. Earthscan Publication Limited, London, p 320

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond Ser B Biol Sci 363:447–466. https://doi.org/10.1098/rstb.2007.2163

    Article  Google Scholar 

  • Pretty JN, Noble AD, Bossi D, Dixon J, Hine RE, Penning De Vries FW (2006) Resource conserving agriculture increases yields in developing countries. Environ Sci Technol 40:1114–1119. https://doi.org/10.1021/es051670d

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Sutherland WJ, Ashby J, Auburn J, Baulcombe D, Bell M, Pilgrim S et al (2010) The top 100 questions of importance to the future of global agriculture. Intl J Agric Sustain 8:219–236. https://doi.org/10.3763/ijas.2010.0534

    Article  Google Scholar 

  • Priyadharsini P, Muthukumar T (2015) Insight into the role of arbuscular mycorrhizal fungi in sustainable agriculture. Environmental sustainability. Springer, New Delhi, pp 3–37

    Google Scholar 

  • Ramakrishna R, Rao DT (2008) Strengthening Indian Agriculture through Dryland Farming: need for reforms’. Indian J Agric Econ 63:460–476

    Google Scholar 

  • Ramakrishnan PS (2007) Sustainable agriculture and food security: India–China context. China Rep 43:219

    Article  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeol Cyc 22:GB1003. https://doi.org/10.1029/2007gb002952

    Article  Google Scholar 

  • Rao DL, Balachandar D (2017) Nitrogen inputs from biological nitrogen fixation in Indian agriculture. In: The Indian nitrogen assessment: sources of reactive nitrogen, environmental and climate effects, management options, and policies, vol 14, p 117

  • Ritzema HP, Satyanarayana TV, Raman S, Boonstra J (2008) Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agric Water Manage 95:179–189

    Article  Google Scholar 

  • RWC (Rice-Wheat Consortium) (2005) Rice-wheat cropping systems of indo-gangetic plains, New Delhi, India. Research highlights 2004

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Article  Google Scholar 

  • Sah D, Devakumar AS (2018) The carbon footprint of agricultural crop cultivation in India. Carbon Manag 9:213–225

    Article  CAS  Google Scholar 

  • Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A (2013) A review on the role of Azospirillumin on the yield improvement of non leguminous crops. Afr J Microb Res 6:1085–1102

    Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  CAS  PubMed  Google Scholar 

  • Sankar Ganesh KS, Sundaramoorthy P, Nagarajan M, Xavier RL (2017) Role of organic amendments in sustainable agriculture. Sustainable agriculture towards food security. Springer, Singapore, pp 111–124

    Chapter  Google Scholar 

  • Sarkar M, Datta S, Kundagrami S (2017) Global climate change and mung bean production: aroadmap towards future sustainable agriculture. In: Sustaining future food security in changing environment, p 99

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2016) Soil microbes: the invisible managers of soil fertility. Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 1–16

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Nat Acad Sci USA 104:19703–19708. https://doi.org/10.1073/pnas.0701976104

    Article  PubMed  Google Scholar 

  • Searchinger TD, Wirsenius S, Beringer T, Dumas P (2018) Assessing the efficiency of changes in land use for mitigating climate change. Nature 564:249

    Article  CAS  Google Scholar 

  • Senthilkumar K, Bindraban P, Thiyagarajan T, De Ridder N, Giller K (2008) Modified rice cultivation in Tamil Nadu, India: yield gains and farmers’ (lack of) acceptance. Agric Syst 98:82–94

    Article  Google Scholar 

  • Sharma SK (2002) A synoptic view of linkages of organic farming with productivity and sustainability of India. In: CAS training on organic agriculture—a paragon for sustainability held at JNKVV, Jabalpur, March 26th—April 15th, 2002, p 29

  • Sharma LC, Arora U (2006) Combating India’s food problem by 2020. Ann Agric Bio Res 11:113–116

    Google Scholar 

  • Sharma SK, Choudhury A, Sarkar P et al (2011) Greenhouse gas inventory estimates for India. Curr Sci 101:405–415

    CAS  Google Scholar 

  • Sharma P, Kumawat KC, Kaur S (2016) Plant growth promoting rhizobacteria in nutrient enrichment: current perspectives. Biofortification of food crops. Springer, New Delhi, pp 263–289

    Chapter  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shiva V (1991) The green revolution in the Punjab. Ecologist 21:57–60

    Google Scholar 

  • Shukla AK, Malik RS, Tiwari PK, Prakash C, Behera SK, Yadav H, Narwal RP (2015) Status of micronutrient deficiencies in soils of Haryana. Indian J Fert 11:16–27

    Google Scholar 

  • Sihi D, Dari B, Sharma DK, Pathak H, Nain L, Sharma OP (2017) Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. J Plant Nutr Soil Sci 180:389–406

    Article  CAS  Google Scholar 

  • Singh R (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric Ecosyst Environ 82:97–103

    Article  Google Scholar 

  • Singh RB (2001) Impact of land-use change on groundwater in the Punjab-Haryana plains, India. In: Impact of human activity on groundwater dynamics (Proceedings of a symposium held during the 6th IAHS Scientific Assembly at Maastricht, The Netherlands, July 2001). IAHS Publ. no. 269

  • Singh YV (2013) Crop and water productivity as influenced by rice cultivation methods under organic and inorganic sources of nutrient supply. Paddy Water Environ 11:531–542. https://doi.org/10.1007/s10333-012-0346-y

    Article  Google Scholar 

  • Singh J, Sidhu RS (2006) Accounting for impact of environmental degradation in agriculture of Indian Punjab. Agric Econ Res Rev 19:37–48

    Google Scholar 

  • Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS (2015a) Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng 77:324–347. https://doi.org/10.1016/j.ecoleng.2015.01.011

    Article  Google Scholar 

  • Singh R, Srivastava P, Upadhyay S, Singh P, Raghubanshi AS, Babu JN (2015b) Integrating biochar as conservation agriculture tool under climate change mitigation scenario. In: Proceedings of national conference on climate change: impacts, adaptation, mitigation scenario and future challenges in Indian perspective

  • Singh R, Srivastava P, Singh P, Raghubanshi AS (2016a) Sustainability indicators of the emergent agronomic practices: An Indian perspective. In: Gurjar BR, Molina LT (eds) Environmental science & engineering: climate change and sustainable technology, vol 12. Studium, New York, pp 142–166

    Google Scholar 

  • Singh OP, Singh R, Lakra K, Singh PK (2016b) Impact of zero tillage on environment and wheat productivity: evidences from gorakhpur district of eastern Uttar Pradesh, india. Int J Agric Stat Sci 12:21–28

    Google Scholar 

  • Singh P, Singh R, Borthakur A, Srivastava P, Srivastava N, Tiwary D, Mishra PK (2016c) Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol Environ 1:131–140

    Article  Google Scholar 

  • Singh R, Srivastava P, Singh P, Upadhyay S, Raghubanshi AS (2017) Human overpopulation and food security: challenges for the agriculture sustainability. In: Environmental issues surrounding human overpopulation. IGI Global, pp 12–39

  • Singh R, Srivastava P, Singh P, Sharma AK, Singh H, Raghubanshi AS (2019a) Impact of rice-husk ash on the soil biophysical and agronomic parameters of wheat crop under a dry tropical ecosystem. Ecol Indian 105:505–515

    Article  CAS  Google Scholar 

  • Singh R, Singh P, Singh H, Raghubanshi AS (2019b) Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar 1:229–235. https://doi.org/10.1007/s42773-019-00013-6

    Article  Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131. https://doi.org/10.1579/0044-7447-31.2.126

    Article  PubMed  Google Scholar 

  • Solanki P, Bhargava A, Chhipa J, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  • Somasundaram E, Asoka Raja N, Mohamed Amanullah M, Nandhini DU (2015) A guide to organic farming. University Press, Tamil Nadu Agricultural University, Coimbatore, 641003, India

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizospherebacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. Fed Eur Mat Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Souza BD, Rao KRM (2016) Challenges in achieving food security in India. Asian J Microb Biotech Environ Sci 18:957–961

    Google Scholar 

  • Sreenivas K, Dadhwal VK, Kumar S, Harsha GS, Mitran T, Sujatha G, Suresh GJR, Fyzee MA, Ravisankar T (2016) Digital mapping of soil organic and inorganic carbon status in India. Geoderma 269:160–173

    Article  CAS  Google Scholar 

  • Srivastava P, Raghubanshi AS, Singh R, Tripathi SN (2015) Soil carbon efflux and sequestration as a function of relative availability of inorganic N pools in drytropical agroecosystem. Appl Soil Ecol 96:1–6

    Article  Google Scholar 

  • Srivastava P, Singh R, Tripathi S, Raghubanshi AS (2016) An urgent need of sustainable thinking in agriculture—an Indian scenario. Ecol Indian 67:611–622. https://doi.org/10.1016/j.ecolind.2016.03.015

    Article  Google Scholar 

  • Srivastava P, Singh R, Tripathi S, Singh H, Raghubanshi AS, Mishra PK (2018) A new insight into the warming potential of organically amended agro-ecosystems. Organ Agric 8:275–284

    Article  Google Scholar 

  • Stoop WA, Uphoff N, Kassam A (2002) A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agric Syst 71:249–274

    Article  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 117–143

    Chapter  Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphatesolubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Thamdrup B (2012) New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407–428

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Umarani R, Subramaniyan K (2000) Modernization of agriculture—a boon or bane? Curr Sci 79:1515

    Google Scholar 

  • UNPD (2007) http://www.un.org/en/development/desa/population/. Accessed 4 Jan 2019

  • Uphoff N, Kassam A, Harwood R (2011) SRI as a methodology for raising crop and water productivity: productive adaptations in rice agronomy and irrigation water management. Paddy Water Environ 9:3–11. https://doi.org/10.1007/s10333-010-0224-4

    Article  Google Scholar 

  • Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM, Challinor AJ, Wollenberg E et al (2012) Options for support to agriculture and food security under climate change. Environ Sci Policy 15:136–144. https://doi.org/10.1016/j.envsci.2011.09.003

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wakeyo MB, Gardebroek C (2017) Share of irrigated land and farm size in rainwater harvesting irrigation in Ethiopia. J Arid Environ 139:85–94

    Article  Google Scholar 

  • Warren MD (1993) Using indigenous knowledge in agricultural development. The World Bank, Washington, DC

    Google Scholar 

  • Wichelns D, Oster JD (2006) Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric Water Manage 86:114–127

    Article  Google Scholar 

  • Wolf J, Bindraban PS, Luijten JC, Vleeshouwers LM (2003) Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric Syst 76:841–861

    Article  Google Scholar 

  • World Bank (2008) World Development Report 2008: agriculture for development. World Bank, Washington, DC

    Book  Google Scholar 

  • Yan M, Cheng K, Luo T, Yan Y, Pan G, Rees RM (2015) Carbon footprint of grain crop production in china- based on farm survey data. J Clean Prod 104:130–138. https://doi.org/10.1016/j.jclepro.2015.05.058

    Article  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy-soil on heavy metal availability and their uptake by rice plants. Environ Poll 159:84–91

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

Download references

Acknowledgements

RS extends his thanks to Mr. Pramit Verma, IESD, BHU, for his help in improving the earlier drafts of the article. RS is also thankful to Dr. Pratap Srivastava, Department of Botany, SPM Govt. College, Prayagraj, for his thoughtful suggestions for drafting the article. RS acknowledges the financial support from University Grants Commission (UGC), New Delhi, India as senior research fellowship. Authors are thankful to the anonymous reviewers for their suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Raghubanshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Singh, H. & Raghubanshi, A.S. Challenges and opportunities for agricultural sustainability in changing climate scenarios: a perspective on Indian agriculture. Trop Ecol 60, 167–185 (2019). https://doi.org/10.1007/s42965-019-00029-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-019-00029-w

Keywords

Navigation