Kernel density estimation based on progressive type-II censoring

Abstract

Progressive censoring is essential for researchers in industry as a mean to remove subjects before the final termination point in order to save time and reduce cost. Recently, kernel density estimation has been intensively investigated due to its asymptotic properties and applications. In this paper, we investigate the asymptotic properties of the kernel density estimators based on progressive type-II censoring and their application to hazard function estimation. A bias-adjusted kernel density estimator is also proposed. Our simulation indicates that the kernel density estimates under progressive type-II censoring is competitive compared with kernel density estimates under simple random sampling, depending on the censoring schemes. An example regarding failure times of aircraft windshields is used to illustrate the proposed methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexandre, B. T. (2009). Introduction to nonparametric estimation. New York: Springer.

    Google Scholar 

  2. Balakrishnan, N. (2007). Progressive censoring methodology: An appraisal. Test, 16(2), 211.

    MathSciNet  MATH  Article  Google Scholar 

  3. Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: Theory, methods, and applications. New York: Springer.

    Google Scholar 

  4. Balakrishnan, N., & Cramer, E. (2014). The art of progressive censoring. New York: Birkhauser.

    Google Scholar 

  5. Balakrishnan, N., & Bordes, L. (2003). Nonparametric hazard rate estimation under progressive type-II censoring. Handbook of Statistics, 23, 227–249.

    Article  Google Scholar 

  6. Baxter, M. J., Beardah, C. C., & Westwood, S. (2000). Sample size and related issues in the analysis of lead isotope data. Journal of Archaeological Science, 27(10), 973–980.

    Article  Google Scholar 

  7. Berg, A., & Politis, D. (2009). CDF and survival function estimation with infinite-order kernels. Electronic Journal of Statistics, 3, 1436–1454.

    MathSciNet  MATH  Article  Google Scholar 

  8. Biswas, A., & Sundaram, R. (2006). Kernel survival function estimation based on doubly censored data. Communications in Statistics-Theory and Methods, 35(7), 1293–1307.

    MathSciNet  MATH  Article  Google Scholar 

  9. Blischke, W. R., & Murthy, D. P. (2000). Reliability: Modeling. Prediction and optimization. New York: Wiley.

  10. Bordes, L. (2004). Nonparametric estimation under progressive censoring. Journal of Statistical Planning and Inference, 119(1), 171–189.

    MathSciNet  MATH  Article  Google Scholar 

  11. Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations (Vol. 18). Oxford: OUP Oxford.

    Google Scholar 

  12. Cramer, E. (2014). Extreme value analysis for progressively type-II censored order statistics. Communications in Statistics-Theory and Methods, 43(10–12), 2135–2155.

    MathSciNet  MATH  Article  Google Scholar 

  13. DiNardo, J., Fortin, N. M., & Lemieux, T. (1995). Labor market institutions and the distribution of wages, 1973–1992: A semiparametric approach (No. w5093). Cambridge: National Bureau of Economic Research.

  14. Ferreyra, R. A., Podestá, G. P., Messina, C. D., Letson, D., Dardanelli, J., Guevara, E., et al. (2001). A linked-modeling framework to estimate maize production risk associated with ENSO-related climate variability in Argentina. Agricultural and Forest Meteorology, 107(3), 177–192.

    Article  Google Scholar 

  15. Fix, E., & Hodges, J. L. (1951). Discriminatory analysis-nonparametric discrimination: Consistency properties. Berkeley: California Univ Berkeley.

    Google Scholar 

  16. Jeffrey, S. S. (1996). Smoothing methods in statistics. New York: Springer.

    Google Scholar 

  17. Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical Planning and Inference, 48(1), 1–23.

    MathSciNet  MATH  Article  Google Scholar 

  18. Kamps, U. (1999). Order statistics, generalized. In Encyclopedia of Statistical Sciences.

  19. Kim, K. D., & Heo, J. H. (2002). Comparative study of flood quantiles estimation by nonparametric models. Journal of Hydrology, 260(1), 176–193.

    Article  Google Scholar 

  20. Lejeune, M., & Sarda, P. (1992). Smooth estimators of distribution and density functions. Computational Statistics & Data Analysis, 14(4), 457–471.

    MathSciNet  MATH  Article  Google Scholar 

  21. Lin, C. T., & Balakrishnan, N. (2011). Asymptotic properties of maximum likelihood estimators based on progressive type-II censoring. Metrika, 74, 349–360.

    MathSciNet  MATH  Article  Google Scholar 

  22. Nadaraya, E. A. (1974). On the integral mean square error of some nonparametric estimates for the density function. Theory of Probability & Its Applications, 19(1), 133–141.

    Article  Google Scholar 

  23. Ng, H. K. T., Chan, P. S., & Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm. Computational Statistics & Data Analysis, 39(4), 371–386.

    MathSciNet  MATH  Article  Google Scholar 

  24. Ng, H. K. T., Chan, P. S., & Balakrishnan, N. (2004). Optimal progressive censoring plan for Weibull distribution. Technometrics, 46, 470–481.

    MathSciNet  Article  Google Scholar 

  25. Paulsen, O., & Heggelund, P. (1996). Quantal properties of spontaneous EPSCs in neurones of the guinea-pig dorsal lateral geniculate nucleus. The Journal of Physiology, 496(Pt 3), 759.

    Article  Google Scholar 

  26. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.

    MathSciNet  MATH  Article  Google Scholar 

  27. Polansky, A. M., & Baker, E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, 65(1–4), 63–80.

    MathSciNet  MATH  Article  Google Scholar 

  28. Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. The Annals of Statistics, 1, 453–466.

    MathSciNet  MATH  Article  Google Scholar 

  29. Rosenblatt, M. (1971). Curve estimates. The Annals of Mathematical Statistics, 42(6), 1815–1842.

    MathSciNet  MATH  Article  Google Scholar 

  30. Samawi, H., Rochani, H., Yin, J., Linder, D., & Vogel, R. (2018). Notes on kernel density based mode estimation using more efficient sampling designs. Computational Statistics, 33, 1–20.

    MathSciNet  MATH  Article  Google Scholar 

  31. See, C., & Chen, J. (2008). Inequalities on the variance of convex functions of random variables. Journal of inequalities in pure and applied mathematics, 9(3), 1–5.

    MathSciNet  Google Scholar 

  32. Segal, M. R., & Wiemels, J. L. (2002). Clustering of translocation breakpoints. Journal of the American Statistical Association, 97(457), 66–76.

    MathSciNet  MATH  Article  Google Scholar 

  33. Simonoff, J. S. (2012). Smoothing methods in statistics. New York: Springer.

    Google Scholar 

  34. Singh, R. S. (1977). Applications of estimators of a density and its derivatives to certain statistical problems. Journal of the Royal Statistical Society Series B (Methodological), 39, 357–363.

    MathSciNet  MATH  Article  Google Scholar 

  35. Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). New York: CRC Press.

    Google Scholar 

  36. Tortosa-Ausina, E. (2002). Financial costs, operating costs, and specialization of Spanish banking firms as distribution dynamics. Applied Economics, 34(17), 2165–2176.

    Article  Google Scholar 

  37. Viveros, R., & Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics, 36(1), 84–91.

    MathSciNet  MATH  Article  Google Scholar 

  38. Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. London: Chapman & Hall.

    Google Scholar 

  39. Wolfgang, H., Marlene, M., Stefan, S., & Axel, W. (2004). Nonparametric and semiparametric models. Berlin: Springer.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amal Helu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helu, A., Samawi, H., Rochani, H. et al. Kernel density estimation based on progressive type-II censoring. J. Korean Stat. Soc. 49, 475–498 (2020). https://doi.org/10.1007/s42952-019-00022-y

Download citation

Keywords

  • Kernel density estimation
  • Progressive censoring
  • Simple random sample
  • Integrated mean square error