Laboratory evaluation of gap graded rubber modified warm mix asphalt


Crumb Rubber (CR), if used in Gap-graded Hot Mix Asphalt (HMA), forms an excellent splash-&-spray resistant, durable and fatigue resistant HMA layer. The only drawback is the higher asphalt production temperature due to addition of CR. The higher production temperature can be reduced by using Warm Mix Additives with only concern being its effect on the performance. The paper contemplates the use of 1.5% Sasobit® with a view to achieve similar or better performance properties at lower mixing temperature. The results indicate an overall improvement in performance (in terms of rutting and fatigue) in light of the laboratory tests performed. The paper concludes with Gap-graded Warm Mix Asphalt (WMA) as a feasible solution when 1.5% Sasobit® is used as an additive.

This is a preview of subscription content, log in to check access.


  1. [1]

    S.M. Bertollo, L.B. Bernucci, J.L. Fernandes, L.M. Leite, Mechanical Properties of Asphalt Mixtures Using Recycled Tire Rubber Produced in Brazil—A Laboratory Evaluation, Proceedings of 83rd TRB Annual Meeting, Washington DC, 2004.

  2. [2]

    K.E, Kaloush, M. Witczak, A.C. Sotil, Laboratory evaluation of asphalt rubber mixtures using the dynamic modulus (E*) test, presented at the 82nd TRB Annual Meeting, Washington DC, 2003.

  3. [3]

    C.T. Chiu, L.C. Lu, A laboratory study on stone matrix asphalt using ground tire rubber, Constr. Buil. Mater. 21(5) (2007) 1027–1033.

    Article  Google Scholar 

  4. [4]

    M. N. Partl, E. Pasquini, F. Canestrari, A. Virgili, Analysis of water and thermal sensitivity of open graded asphalt rubber mixtures, Constr. Buil. Mater. 24(3) (2010) 283–291.

    Article  Google Scholar 

  5. [5]

    A. Kumar, R. Choudhary, P. S. Kandhal, A. Julaganti, O. P. Behera, A. Singh, R. Kumar, Fatigue characterisation of modified asphalt binders containing warm mix asphalt additives, Road Mater. Pavement Des. 21(2) (2020) 519–541.

    Article  Google Scholar 

  6. [6]

    I. M. A. Abuawad, I. L. Al-Qadi, J. S. Trepanier, Mitigation of moisture damage in asphalt concrete: Testing techniques and additives/modifiers effectiveness, Constr. Buil. Mater. 84 (2015) 437–443.

    Article  Google Scholar 

  7. [7]

    K. Kaloush, G. B. Way, H. Zhu, Properties of crumb rubber concrete, Transp. Res. Rec. 1914(1) (2005) 8–14.

    Article  Google Scholar 

  8. [8]

    Y. Zhang, Z. Leng, Z. Dong, Z. Liu, Z. Zhang, Z. Tan, Performance verification of various bulk density measurement methods for open- and gap graded asphalt mixtures using X-ray computed tomography, Constr. Buil. Mater. 158 (2018) 855–863.

    Article  Google Scholar 

  9. [9]

    G. King, R.D. Pavlovich, A.L.E. Texas, P. Kandhal, Additives in asphalt. (Asociación Mexicana del Asfalto, A.C, 1999) Accessed 28 March 2019.

  10. [10]

    V. Venudharan, K. P. Biligiri, J. B. Sousa, G. B. Way, Asphalt-rubber gap graded mixture design practices: a state-of-the-art research review and future perspective, Road Mater. Pavement Des. 18(3) (2016) 730–752.

    Article  Google Scholar 

  11. [11]

    N. Saboo, P. A. Kumar, Study on creep and recovery behavior of asphalt binders, Constr. Buil. Mater. 96 (2015) 632–640.

    Article  Google Scholar 

  12. [12]

    L. Raad, S. Saboundjian, G. Minassian, Field Aging Effects on Fatigue of Asphalt Concrete and Asphalt-Rubber Concrete, Transp. Res. Rec. 1767(1) (2001) 126–134.

    Article  Google Scholar 

  13. [13]

    J. A. D’Angelo, E. E. Harm, J. C. Bartoszek, G. L. Baumgardner, M. R. Corrigan, J. E. Cowsert, T. P. Harman, M. Jamshidi, H. W. Jones, D. E. Newcomb, B. D. Prowell, R. A. Sines, B. A. Yeaton, Warm-Mix Asphalt: European Practice, Washington, (National Transportation Library, 2008). Accessed 15 June 2019.

    Google Scholar 

  14. [14]

    F. Xiao, S. N. Amirkhanian, Laboratory investigation of moisture damage in rubberised asphalt mixtures containing reclaimed asphalt pavement, Inter. J. Pavement Eng. 10(5) (2009) 319–328.

    Article  Google Scholar 

  15. [15]

    M. Fakhri, A. R. Ghanizadeh, H. Omrani, Comparison of Fatigue Resistance of HMA and WMA Mixtures Modified by SBS, Proc. Soci. Behavioral Sci. 104 (2013) 168–177.

    Article  Google Scholar 

  16. [16]

    Z. Hasan, B. Hamid, I. Amir, N. Danial, Long term performance of warm mix asphalt versus hot mix asphalt, J. Central South Univer. 20(1) (2013) 256–266.

    Article  Google Scholar 

  17. [17]

    A. Vargas-Nordcbeck, D. H. Timm, Rutting characterization of warm mix asphalt and high RAP mixtures, Road Mater. Pavement Des. 13(sup1) (2012) 1–20.

    Article  Google Scholar 

  18. [18]

    F. M. Nejad, A. Azarhoosh, G. H. Hamedi, H. Roshani, Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements, Road Mater. Pavement Des. 15(1) (2013) 207–219.

    Article  Google Scholar 

  19. [19]

    I. Omari, V. Aggarwal, S. Hesp, Investigation of two Warm Mix Asphalt additives, Inter. J. Pavement Res. Technol. 9(2) (2016) 83–88.

    Article  Google Scholar 

  20. [20]

    Z. Arega, A. Bhasin, A. Motamed, F. Turner, Influence of Warm-Mix Additives and Reduced Aging on the Rheology of Asphalt Binders with Different Natural Wax Contents, J. Mater. Civ. Eng. 23(10) (2011) 1453–1459.

    Article  Google Scholar 

  21. [21]

    J. Cheng, J. Shen, F. Xiao, Moisture Susceptibility of Warm-Mix Asphalt Mixtures Containing Nanosized Hydrated Lime, J. Mater. Civ. Eng. 23(11) (2011) 1552–1559.

    Article  Google Scholar 

  22. [22]

    S. Diefenderfer, A. Hearon, Laboratory Evaluation of a Warm Asphalt Technology for Use in Virginia, Virginia department of transportation, Federal Highway Administration, Charlottesville, USA, 2008.

    Google Scholar 

  23. [23]

    G. C. Hurley, B. D. Prowell, Evaluation of Sasobit® for use in warm-mix asphalt. National Center for Asphalt Technology (NCAT), Auburn, United States, 2005.

    Google Scholar 

  24. [24]

    T. Gandhi, Effects of warm asphalt additives on asphalt binder and mixture properties, (PhD thesis), Clemson: Clemson University, Department of Civil Engineering; 2008.

    Google Scholar 

  25. [25]

    A. Chowdhury, J. W. Button, A Review of Warm Mix Asphalt. Report Number SWUTC/08/473700-00080-1. Texas Transportation Institute, Texas A&M University System College Station, Texas, USA, 2008.

    Google Scholar 

  26. [26]

    M. Zaumanis, Warm mix asphalt Investigation, (PhD Thesis), Riga Technical University, Kgs. Lyngby, Denmark, 2010.

    Google Scholar 

  27. [27]

    B. Şengöz, A. Topal, C. Gorkem, Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite, Road Mater. Pavement Des. 14(4) (2013) 933–945.

    Article  Google Scholar 

  28. [28]

    S. W. Goh, Z. You, Mechanical properties of porous asphalt pavement materials with warm mix asphalt and RAP, J Transp. Eng. 138(1) (2012) 90–7.

    Article  Google Scholar 

  29. [29]

    S. Zhao, B. Huang, X. Shu, M. Woods, Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement, Constr. Buil. Mater. 44 (2013) 92–100.

    Article  Google Scholar 

  30. [30]

    I. L. Al-Qadi, J. Baek, Z. Leng, H. Wang, M. Doyen, J. Kern, S. L. Gillen, Short-term performance of modified stone matrix asphalt (SMA) produced with warm mix additives, Illinois Center for Transportation; Illinois, USA, 2012.

    Google Scholar 

  31. [31]

    H. Ziari, A. Goli, A. Amini, Effect of Crumb Rubber Modifier on the Performance Properties of Rubberized Binders, J. Mater. Civ. Eng. 28 (12) (2016).

  32. [32]

    W. D. Cao, S. T. Liu, X. Z. Cui, X. Q. Yu, Effect of Crumb Rubber Particle Size and Content on Properties of Crumb Rubber Modified (CRM) Asphalt, Appl. Mech. Mater. 99 (2011) 955–959.

    Google Scholar 

  33. [33]

    Bureau of Indian Standards, Methods of test for aggregates for concrete. IS 2386; 1963.Part I. BIS, New Delhi, India, 1963.

    Google Scholar 

  34. [34]

    Bureau of Indian Standards, Methods of test for aggregates for concrete, IS 2386; 1963. Part III. BIS, New Delhi, India, 1963.

    Google Scholar 

  35. [35]

    Bureau of Indian Standards. Methods of test for aggregates for concrete, IS 2386; 1963. Part IV. BIS, New Delhi, India, 1963.

    Google Scholar 

  36. [36]

    Bureau of Indian Standards, Methods of test for aggregates for concrete, IS 2386; 1963. Part V. BIS, New Delhi, India, 1963.

    Google Scholar 

  37. [37]

    Bureau of Indian Standards, Paving bitumen-specification second revision. IS 73; 2013. BIS, New Delhi, India, 2013.

    Google Scholar 

  38. [38]

    Bureau of Indian Standards, Polymer and Rubber Modified Bitumen — Specification. BIS 15462; 2004. BIS, New Delhi, India, 2004.

    Google Scholar 

  39. [39]

    American Society for Testing and Materials, Standard Practice for Determining the Separation Tendency of Polymer from Polymer-Modified Asphalt. ASTM D7173-20. ASTM International, West Conshohocken, PA, 2020.

    Google Scholar 

  40. [40]

    Y. R. Kim, J. Zhang, H. Ban, Moisture damage characterization of warm-mix asphalt mixtures based on laboratory-field evaluation, Constr. Buil. Mater. 31 (2012) 204–211.

    Article  Google Scholar 

  41. [41]

    H. Kim, S. J. Lee, S. N. Amirkhanian, Influence of Warm Mix Additives on PMA Mixture Properties, J. Transp. Eng. 138(8) (2012) 991–997.

    Article  Google Scholar 

  42. [42]

    C. K. Akisetty, S. J. Lee, S. N. Amirkhanian, Effects of Compaction Temperature on Volumetric Properties of Rubberized Mixes Containing Warm-Mix Additives, J. Mater. Civ. Eng. 21(8) (2009) 409–415.

    Article  Google Scholar 

  43. [43]

    K. Kanitpong, N. Charoentham, S. Likitlersuang, Investigation on the effects of gradation and aggregate type to moisture damage of warm mix asphalt modified with Sasobit, Inter. J. Pavement Eng. 13(5) (2012) 451–458.

    Article  Google Scholar 

  44. [44]

    B. Hill, Performance evaluation of warm mix asphalt mixtures incorporating reclaimed asphalt pavement, (PhD Thesis), University of Illinois at Urbana-Champaign, Urbana, USA, 2011.

    Google Scholar 

  45. [45]

    P. V. Shivaprasad, F. Xiao, S. N. Amirkhanian, Performance of warm-mix asphalt mixtures containing recycled coal ash and roofing shingles with moist aggregates for low-volume roads, Transp. Res. Rec. 2205(1) (2011) 48–57.

    Article  Google Scholar 

  46. [46]

    I. Gillespie, Quantifying the energy used in an asphalt coating plant, Department of Mechanical and Aerospace Engineering, University of Strathclyde, United Kingdom, 2012.

    Google Scholar 

  47. [47]

    Y. R. Kim, Asphalt Pavements, Proceedings of the International Conference on Asphalt Pavements, Raleigh, North Carolina, USA, 2014.

  48. [48]

    Asphalt Institute, Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types. Manual Series No. 2 (MS-2). Asphalt Institute. Lexington, USA, 2014.

    Google Scholar 

  49. [49]

    Indian Roads Congress, Guidelines for Gap graded Wearing Course with Rubberised Bitumen-Rubber. IRC SP: 107-2015. IRC, New Delhi, India, 2015.

    Google Scholar 

  50. [50]

    American Society for Testing and Materials, Standard Test Method for Bulk Density and Volume of Solid Refractories by Wax Immersion. ASTM C914-09(2015). ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  51. [51]

    American Society for Testing and Materials, Standard Test Method for Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures. ASTM D6390-11(2017). ASTM International, West Conshohocken, PA, 2017.

    Google Scholar 

  52. [52]

    American Society for Testing and Materials, Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM C131 / C131M-20. ASTM International, West Conshohocken, PA, 2020.

    Google Scholar 

  53. [53]

    American Association of State Highway and Transportation Officials, Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO T324-14. AASHTO, Washington DC., 2014.

    Google Scholar 

  54. [54]

    American Association of State and Highway Transportation Officials, Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). AASHTO TP 70. AASHTO, Washington DC, 2013.

    Google Scholar 

  55. [55]

    H. Soenen, T. Blomberg, T. Pellinen, O. V. Laukkanen, The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility, Road Mater. Pavement Des. 14(sup1) (2013) 2–11.

    Article  Google Scholar 

  56. [56]

    Multi-Stress Creep Recovery tests for Asphalt Binders. PAPA Regional Technical Workshop, Breinigsville, PA, 2015. [Accessed 24 May 2019]

  57. [57]

    European Committee for Standardization, Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Resistance to Fatigue. EN 12697-24. Brussels, Belgium, 2012.

  58. [58]

    American Association of State Highway and Transportation Officials, Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA). AASHTO R30. AASHTO, Washington DC, 2002.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sridhar Raju.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kubair, S., Ravindra, W.A., Raju, S. et al. Laboratory evaluation of gap graded rubber modified warm mix asphalt. Int. J. Pavement Res. Technol. (2020).

Download citation


  • Gap graded
  • Asphalt rubber
  • Crumb rubber
  • Warm mix additive
  • WMA
  • Aging
  • fatigue
  • Rutting
  • Moisture damage