Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction


The natural aggregates are depleting in developing countries due to the excessive usage in road and building construction. In the present study, the engineering properties of abundantly available lateritic soil stabilized with Ground Granulated Blast Furnace Slag (GGBS) and alkali solutions like Sodium hydroxide and Sodium silicate was evaluated. The suitability of stabilized soil as a base course in flexible pavements was investigated. The lateritic soil was treated with 15, 20, 25 and 30% of GGBS and alkali solutions consisting of 5% of Sodium oxide with Silica Modulus (Ms) of 0.5, 1.0 and 1.5 at a constant water binder ratio of 0.25. The improved unconfined compressive strength, flexural strength, and fatigue life were observed from the soil treated with 30% of GGBS and alkali solution having Ms 1.0 air-cured for 28 days at ambient temperature. The improvement is due to the formation of Calcium Silicate Hydrates and Calcium Alumino Silicate Hydrates from an exothermic reaction between Calcium ions and the dissolved silicates and aluminates present in GGBS and alkali solutions. The samples treated with 25, 30% of GGBS and alkali solution having 1.0 Ms cured for 28 days found to be durable in Wetting-Drying and Freezing-Thawing tests. The compact and densified crystal orientation of the treated soil samples was observed from the microstructure images obtained from the Scanning Electron Microscope technique. The design of low and high volume roads was suggested with stabilized soil and strains developed at different locations on the proposed pavement were analyzed using pavement analysis software.

This is a preview of subscription content, access via your institution.


  1. [1]

    M Gidigasu, Laterite Soil Engineering: Pedogenesis and Engineering Principles, 1976.

  2. [2]

    S.N. Eluozo, C. Nwaobakata, Predictive models to determine the behavior of plastic and liquid limit of Lateratic soil for Raod construction at Egbema: Imo state of Nigeria, Int. J. Eng. Technol. 2 (1) (2012) 25. https://doi.org/10.14419/ijet.v2i1.425.

    Article  Google Scholar 

  3. [3]

    E. Mengue, H. Mroueh, L. Lancelot, R.M. Eko, Mechanical improvement of a fine-grained lateritic soil treated with cement for use in road construction, J. Mater. Civ. Eng. 29 (11) (2017) 1–22. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002059.

    Article  Google Scholar 

  4. [4]

    I.T. Jawad, M.R. Taha, Z.H. Majeed, T.A. Khan, Soil stabilization using lime: Advantages, disadvantages and proposing a potential alternative, Res. J. Appl. Sci. Eng. Technol. 8 (4) (2014) 510–520.

    Article  Google Scholar 

  5. [5]

    A. Hooshmand, M.H. Aminfar, E. Asghari, H. Ahmadi, Mechanical and Physical Characterization of Tabriz Marls, Iran, Geotech. Geol. Eng. 30 (2012) 219–232. https://doi.org/10.1007/s10706-011-9464-3.

    Article  Google Scholar 

  6. [6]

    J. Khazaei, H. Moayedi, Soft Expansive Soil Improvement by Eco-Friendly Waste and Quick Lime, Arab. J. Sci. Eng. 44 (2019) 8337–8346. https://doi.org/10.1007/s13369-017-2590-3.

    Article  Google Scholar 

  7. [7]

    M. Joel, I.O. Agbede, Mechanical-cement stabilization of laterite for use as flexible pavement material, J. Mater. Civ. Eng. 23 (2) (2011) 146–152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000148.

    Article  Google Scholar 

  8. [8]

    A.U.R. Shankar, H.K. Rai, R.I. Mithanthaya, Bio-Enzyme stabilised laterite soil as a highway material, J. Indian Roads Congr. Pap. No. 553. (2009) 143–151.

    Google Scholar 

  9. [9]

    E. Coudert, M. Paris, D. Deneele, G. Russo, A. Tarantino, Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution, Constr. Build. Mater. 201 (2019) 539–552. https://doi.org/10.1016/j.conbuildmat.2018.12.188.

    Article  Google Scholar 

  10. [10]

    N. Latifi, F. Vahedifard, E. Ghazanfari, S. Horpibulsuk, A. Marto, J. Williams, Sustainable improvement of clays using low-carbon nontraditional additive, Int. J. Geomech. 18 (3) (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001086.

    Google Scholar 

  11. [11]

    M.H. Fasihnikoutalab, A. Asadi, B.K. Huat, R.J. Ball, S. Pourakbar, P. Singh, Utilisation of carbonating olivine for sustainable soil stabilization, Environ. Geotech. 4 (2017) 184–198. https://doi.org/10.1680/jenge.15.00018.

    Article  Google Scholar 

  12. [12]

    M.H. Fasihnikoutalab, A. Asadi, B. Kim Huat, P. Westgate, R.J. Ball, S. Pourakbar, Laboratory-scale model of carbon dioxide deposition for soil stabilisation, J. Rock Mech. Geotech. Eng. 8 (2) (2016) 178–186. https://doi.org/10.1016/j.jrmge.2015.11.001.

    Article  Google Scholar 

  13. [13]

    H. Bahadori, A. Hasheminezhad, F. Taghizadeh, Experimental study on marl soil stabilization using natural pozzolans, J. Mater. Civ. Eng. 31 (2) (2019) 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002577.

    Article  Google Scholar 

  14. [14]

    H. Bahadori, A. Hasheminezhad, S. Mohamadi asl, Stabilisation of Urmia Lake peat using natural and artificial pozzolans, Proc. Inst. Civ. Eng. — Gr. Improv. (2019) 1–10. https://doi.org/10.1680/jgrim.19.00024.

  15. [15]

    H. Bahadori, A. Hasheminezhad, S. Alizadeh, The Influence of Natural Pozzolans Structure on Marl Soil Stabilization, Transp. Infrastruct. Geotechnol. 7 (2019) 46–54. https://doi.org/10.1007/s40515-019-00089-4.

    Article  Google Scholar 

  16. [16]

    S.N. Kane, A. Mishra, A.K. Dutta, Preface: International Conference on Recent Trends in Physics (ICRTP 2016), J. Phys. Conf. Ser. 755 (2016) 1–7. https://doi.org/10.1088/1742-6596/755/1/011001.

    Article  Google Scholar 

  17. [17]

    M.H. Fasihnikoutalab, P. Westgate, B.B.K. Huat, A. Asadi, R.J. Ball, H. Nahazanan, P. Singh, New insights into potential capacity of olivine in ground improvement, Electron. J. Geotech. Eng. 20 (2015) 2137–2148.

    Google Scholar 

  18. [18]

    S. V Patankar, S.S. Jamkar, Y.M. Ghugal, Effect of Water-To-Geopolymer Binder Ratio on the Production of Fly Ash Based Geopolymer Concrete, Int. J. Adv. Technol. Civ. Eng. 2 (1) (2013) 79–83. https://doi.org/10.13140/2.1.4792.1284.

    Google Scholar 

  19. [19]

    H. Dehghan, A. Tabarsa, N. Latifi, Y. Bagheri, Use of xanthan and guar gums in soil strengthening, Clean Technol. Environ. Policy. 21 (2019) 155–165. https://doi.org/10.1007/s10098-018-1625-0.

    Article  Google Scholar 

  20. [20]

    A. Allahverdi, E. Najafi Kani, S. Esmaeilpoor, Effects of Silica Modulus and Alkali Concentration on Activation of Blast-Furnace Slag, Iran. J. Mater. Sci. Eng. 5 (2008) 32–35. http://ijmse.iust.ac.ir/browse.php?a_code=A-10-3-26&slc_lang=en&sid=1.

    Google Scholar 

  21. [21]

    M.N. Qureshi, S. Ghosh, Effect of Alkali Content on Strength and Microstructure of GGBFS Paste, Glob. J. Res. Eng. Civ. Struct. Eng. 13 (2013) 11–20.

    Google Scholar 

  22. [22]

    G.N. Obuzor, J.M. Kinuthia, R.B. Robinson, Soil stabilisation with lime-activated-GGBS-A mitigation to flooding effects on road structural layers/embankments constructed on floodplains, Eng. Geol. 151 (2012) 112–119. https://doi.org/10.1016/j.enggeo.2012.09.010.

    Article  Google Scholar 

  23. [23]

    O.S. Olaniyan, R. A. Olaoye, O.M. Okeyinka, D.B. Olaniyan, Soil stabilization techniques using sodium hydroxide additives, Int. J. Civ. 11 (6) (2011) 9–22. http://www.ijens.org/vol_11_i_06/111003-06-8484-ijceeijens.pdf.

    Google Scholar 

  24. [24]

    Fasihnikoutalab, M.H., Pourakbar, S., Ball, R.J. et al. Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide. Acta Geotech. (2019). https://doi.org/10.1007/s11440-019-00884-w.

  25. [25]

    N. Mane, P.M.S. Rajashekhar, R. Mud, Stabilization of Black Cotton Soil by Using Red Mud and Sodium Silicate, Int. Res. J. Eng. Technol. 4 (2017) 2929–2932. https://irjet.net/archives/V4/i7/IRJET-V4I7591.pdf.

    Google Scholar 

  26. [26]

    Hossein Moayedi, Stabilization of organic soil using sodium silicate system grout, Int. J. Phys. Sci. 7 (9) (2012) 1395–1402. https://doi.org/10.5897/ijps11.1509.

    Google Scholar 

  27. [27]

    A. Stempkowska, J. Mastalska-Poplawska, P. Izak, L. Oglaza, M. Turkowska, Stabilization of kaolin clay slurry with sodium silicate of different silicate moduli, Appl. Clay Sci. 146 (9) (2017) 147–151. https://doi.org/10.1016/j.clay.2017.05.046.

    Article  Google Scholar 

  28. [28]

    M.H. Fasihnikoutalab, S. Pourakbar, R.J. Ball, B.K. Huat, The Effect of Olivine Content and Curing Time on the Strength of Treated Soil in Presence of Potassium Hydroxide, Int. J. Geosynth. Gr. Eng. 3 (12) (2017) 0. https://doi.org/10.1007/s40891-017-0089-3.

    Google Scholar 

  29. [29]

    N. Latifi, F. Vahedifard, E. Ghazanfari, A.S.A. Rashid, Sustainable usage of calcium carbide residue for stabilization of clays, J. Mater. Civ. Eng. 30 (6) (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002313.

    Google Scholar 

  30. [30]

    J.C. Petermann, A. Saeed, Alkali-Activated Geopolymers: a Literature Review, Air Force Res. Lab. (2012) 1–99.

  31. [31]

    A. Thomas, R.K. Tripathi, L.K. Yadu, A Laboratory Investigation of Soil Stabilization Using Enzyme and Alkali-Activated Ground Granulated Blast-Furnace Slag, Arab. J. Sci. Eng. 43 (2018) 5193–5202. https://doi.org/10.1007/s13369-017-3033-x.

    Article  Google Scholar 

  32. [32]

    P. Ghadir, N. Ranjbar, Clayey soil stabilization using geopolymer and Portland cement, Constr. Build. Mater. 188 (2018) 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207.

    Article  Google Scholar 

  33. [33]

    M.M. Yadollahi, A. Benli, R. Demirbota, The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites, Constr. Build. Mater. 94 (2015) 767–774. https://doi.org/10.1016/j.conbuildmat.2015.07.052.

    Article  Google Scholar 

  34. [34]

    J.C. Petermann, A. Saeed, M.I. Hammons, Alkali-Activated Geopolymers: aLiterature Review Air Force Research Laboratory Materials and Manufacturing Directorate, Air Force Materiel Command, United States Air Force, Tyndall Air Force Base, FL 32403–5323, 2010.

    Google Scholar 

  35. [35]

    M.H. Fasihnikoutalab, A. Asadi, C. Unluer, B.K. Huat, R.J. Ball, S. Pourakbar, Utilization of alkali-activated olivine in soil stabilization and the effect of carbonation on unconfined compressive strength and microstructure, J. Mater. Civ. Eng. 29 (6) (2017) 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001833.

    Article  Google Scholar 

  36. [36]

    G.N. Obuzor, J.M. Kinuthia, R.B. Robinson, Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS), Eng. Geol. 123 (3) (2011) 179–186. https://doi.org/10.1016/j.enggeo.2011.07.009.

    Article  Google Scholar 

  37. [37]

    E. Coudert, M. Paris, D. Deneele, G. Russo, A. Tarantino, Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution, Constr. Build. Mater. 201 (2019) 539–552. https://doi.org/10.1016/j.conbuildmat.2018.12.188.

    Article  Google Scholar 

  38. [38]

    B.M. Lekha, G. Sarang, A.U.R. Shankar, Effect of Electrolyte Lignin and Fly Ash in Stabilizing Black Cotton Soil, Transp. Infrastruct. Geotechnol. 2 (2015) 87–101. https://doi.org/10.1007/s40515-015-0020-0.

    Article  Google Scholar 

  39. [39]

    B.M. Lekha, S. Goutham, A.U.R. Shankar, Evaluation of lateritic soil stabilized with Arecanut coir for low volume pavements, Transp. Geotech. 2 (2015) 20–29. https://doi.org/10.1016/j.trgeo.2014.09.001.

    Article  Google Scholar 

  40. [40]

    S. Amulya, A.U. Ravi Shankar, M. Praveen, Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag, Int. J. Pavement Eng. 0 (2018) 1–8. https://doi.org/10.1080/10298436.2018.1521520.

    Google Scholar 

  41. [41]

    Nabil, M., Mustapha, A. & Rios, S. Impact of wetting—drying cycles on the mechanical properties of lime-stabilized soils. Int. J. Pavement Res. Technol. 13 (1) (2020) 83–92. https://doi.org/10.1007/s42947-019-0088-y.

    Article  Google Scholar 

  42. [42]

    M. Chi, Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars, Constr. Build. Mater. 99 (2015) 128–136. https://doi.org/10.1016/j.conbuildmat.2015.09.029.

    Article  Google Scholar 

  43. [43]

    N. Hassan, W.H. Wan Hassan, A.S.A. Rashid, N. Latifi, N.Z. Mohd Yunus, S. Horpibulsuk, H. Moayedi, Microstructural characteristics of organic soils treated with biomass silica stabilizer, Environ. Earth Sci. 78 (2019) 1–9. https://doi.org/10.1007/s12665-019-8369-y.

    Article  Google Scholar 

  44. [44]

    T. Phoo-Ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer, Constr. Build. Mater. 91 (2015) 1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001.

    Article  Google Scholar 

  45. [45]

    R. Firdous, D. Stephan, Effect of silica modulus on the geopolymerization activity of natural pozzolans, Constr. Build. Mater. 219 (2019) 31–43. https://doi.org/10.1016/j.conbuildmat.2019.05.161.

    Article  Google Scholar 

  46. [45a]

    Y. Yi, C. Li, S. Liu, Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay, J. Mater. Civ. Eng. 27 (2015) 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001100./

    Article  Google Scholar 

Download references


The authors acknowledge the National Institute of Technology Karnataka, Surathkal for supporting this work by providing required help.

Author information



Corresponding author

Correspondence to Amulya Shivaramaiah.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shivaramaiah, A., Ravi Shankar, A.U., Singh, A. et al. Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction. Int. J. Pavement Res. Technol. 13, 478–488 (2020). https://doi.org/10.1007/s42947-020-0251-5

Download citation


  • Durability
  • Fatigue
  • Microstructure
  • Alkali activation
  • Lateritic soil
  • Stress-strain analysis