Skip to main content
Log in

Laboratory investigation of aged HDPE-modified asphalt mixes

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

High density polyethylene has been utilized by many for asphalt binder/mix modification. This paper examines: (1) the effect of laboratory aging process at temperature of 100°C and at two aging levels between 48 and 96 h on dense-graded asphalt and stone mastic asphalt mixes with and without 5% high density polyethylene by characterizing Marshall stability, Marshall Quotient, indirect tensile strength, tensile strength ratio, and resilient modulus; and (2) the engineering characteristics, such as penetration, ductility, softening point, loss of heat and air (aging), temperature susceptibility, and uniformity of high density polyethylene-modified asphalt. The test results of high density polyethylene-dense-graded asphalt mixes show higher indirect tensile strength, tensile strength ratio, and resilient modulus, and lower Marshall stability, and Marshall Quotient than high density polyethylene-stone mastic asphalt mixes. The asphalt/ high density polyethylene binder test results show higher softening point, more resistance to temperature and aging, and a good compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.I. Al-Hadidy, Y.Q. Tan, Evaluation of Pyrolisis LDPE Modified Asphalt Paving Materials, J. Mater. Civ. Eng. 21 (10) (2008) 1–6

    Google Scholar 

  2. A.I. Al-Hadidy, Y.Q. Tan, Effect of Polyethylene on Life of Flexible Pavements, Constr. Buil. Mater. 23 (3) (2009) 1456–1464.

    Article  Google Scholar 

  3. A.I. Al-Hadidy, Engineering behavior of aged polypropylene-modified asphalt pavements, Constr. Buil. Mater. J. 191 (2018) 187–192.

    Article  Google Scholar 

  4. A.I. Al-Hadidy, Effect of laboratory aging on moisture susceptibility and resilient modulus of asphalt concrete mixes containing PE and PP polymers, Karbala Inter. J. Modern Sci. 4 (4) (2018) 377–381.

    Google Scholar 

  5. M. Attaelmanan, Cheng Pei Feng Al-Hadidy AI. Laboratory evaluation of HMA with high density polyethylene as a modifier, Constr. Buil. Mater. 25 (2011) 2764–2770.

    Article  Google Scholar 

  6. Punith V. S., A. Veeraragavan. Behavior of Asphalt Concrete Mixtures with Reclaimed Polyethylene as Additive, J. Mater. Civ. Eng. 19 (6) (2007) 500–507.

    Article  Google Scholar 

  7. H.H. Kim, M.S. Lee, S.J. Lee, Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR), Inter. J. Pave. Res. Technol. 12 (2) (2019) 215–222.

    Google Scholar 

  8. S.F. Wang, Xinyu Zhao, Qiang Wang. Rheological and Structural Evolution of Rubberized Asphalts under Weathering, J. Mater. Civ. Eng. 29 (10) (2017) 500–507.

    Article  Google Scholar 

  9. D. Zhang, H. Zhang, C. Shi, Investigation of aging performance of SBS modified asphalt with various aging methods, Constr. Buil. Mater. 145 (2017) 445–451.

    Article  Google Scholar 

  10. A.I. Al-Hadidy, Y.Q. Tan, Mechanistic Approach for Polypropylene-Modified Flexible Pavements, J. Mater. Des. 30 (4) (2009) 1133–1140.

    Article  Google Scholar 

  11. S. Hinislioglu, E. Agar. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix, Mater. Letters 58 (3-4) (2004) 267–271.

    Article  Google Scholar 

  12. M. Fakhri, A. Ahmadi, Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles, Constr. Buil. Mater. 157 (2017) 748–756.

    Article  Google Scholar 

  13. B. Hofko, A. Cannone Falchetto, J. Grenfell, L. Huber, X. Lu, L. Porot, L.D. Poulikakos, Z. You, Effect of short-term ageing temperature on bitumen properties, J. Road Mater. Pave. Des. 18 (sup2) (2017) 108–117.

    Article  Google Scholar 

  14. S. Wu, W. Zhang, S. Shen, X. Li, B. Muhunthan, L.N. Mohammad, Field-aged asphalt binder performance evaluation for Evotherm warm mix asphalt: comparisons with hot mix asphalt, Constr. Buil. Mater. 156 (2017) 574–583.

    Article  Google Scholar 

  15. N. Bhargava, B.P. Das, A.K. Siddagangaiah, Synergistic influence of aging and moisture on performance of warm mix asphalt, Inter. J. Pave. Res. Technol. 11 (8) (2018) 789–799.

    Google Scholar 

  16. P.K. Das, R. Balieu, N. Kringos, B. Bjorn, On the oxidative ageing mechanism and its effect on asphalt mixtures morphology, Mater. Struct. 48 (10) (2015) 3113–3127.

    Article  Google Scholar 

  17. P. Das, H. Baaj, N. Kringos, S. Tighe, Coupling of oxidative ageing and moisture damage in asphalt mixtures, J. Road Mater. Pave. Des. 16 (sup1) (2015) 265–279.

    Article  Google Scholar 

  18. B.P. Das, N. Bhargava, A.K. Siddagangaiah, Influence of environmental conditions on the performance of bituminous mixtures, Adv. Civ. Eng. Mater. 7 (2) (2018).

    Google Scholar 

  19. C.A. Bell, A. J. Wieder, M. J. Fellin, Laboratory Aging of Asphalt-Aggregate Mixtures: Field Validation. SHRP-A-390. Strategic Highway Research Program, Oregon State University, National Research Council, Washington, D.C, 1994.

    Google Scholar 

  20. G. Polacco, J. Stastna, D. Biondi, F. Antonelli, Z. Vlachovicova, L. Zanzotto, Rheology of asphalts modified with glycidyl methacrylate functionalized polymers, J. Coloid Interface Sci. 280 (2) (2004) 366–373.

    Article  Google Scholar 

  21. G. Wen, Y. Zhang, Y. Zhang, K. Sun, Y. Fan. Rheological characterization of storage-stable SBS-modified asphalts, Polymer Testing 21 (3) (2002) 295–302.

    Article  Google Scholar 

  22. H. Jin, G. Gao, Y. Zhang, Y. Zhang, K. Sun, Y. Fan, Improved properties of polystyrene-modified asphalt through dynamic vulcanization, Polymer Testing 21 (6) (2002) 633–640.

    Article  Google Scholar 

  23. American Society for Testing and Materials, Standard Specification. Section 4, Vol. 04-03. ASTM International, West Conshohocken, PA, USA, 2004.

  24. B.J. Putman, S.N. Amirkhanian, Utilization of waste fibers in stone matrix asphalt mixtures, Res. Conserv. Recyc. 42 (3) (2004) 265–274.

    Article  Google Scholar 

  25. Asphalt Institute, Mix design method for asphalt concrete and other hot-mix types. MS-2. Lexington, KY, USA, 1984.

  26. SPSS, Inc. version 10.0.5, Chicago IIIinois, 1999.

  27. E.R. Brown, Designing stone matrix asphalt mixtures for rut-resistant pavements, National Cooperative Highway Research Program, Transp. Res. Brd. National Research Council, Washington DC USA, Vol. 425, 1999.

  28. State cooperation of road and bridges (SCRB), Hot mix asphaltic concrete pavement, Iraqi standard specification, Ministry of Housing and Construction, Department of Design and Study, Section R-9, Iraq, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al-Hadidy A. Ibrahim.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, AH.A. Laboratory investigation of aged HDPE-modified asphalt mixes. Int. J. Pavement Res. Technol. 12, 364–369 (2019). https://doi.org/10.1007/s42947-019-0043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0043-y

Keywords

Navigation