POLYTYPISM OF CRONSTEDTITE FROM NAGYBÖRZSÖNY, HUNGARY

Abstract

The present study provides an example of the accurate identification of polytypes of trioctahedral 1:1 layered silicates from single-crystal X-ray diffraction data collected with the aid of a four-circle diffractometer equipped with an area detector. Single crystals of the mineral cronstedtite from the Nagybörzsöny gold ore deposit, northern Hungary, were studied. The chemical composition of some crystals was determined by electron probe microanalysis (EPMA). The precession-like images of the reciprocal space (RS) sections created by the diffractometer software and presented in the study were used to determine the OD (ordered-disordered) subfamilies (Bailey’s groups A, B, C, D) and particular polytypes. With one exception, all crystals studied belong to subfamily A. The rare polytype 1M, a = 5.51, b = 9.54, c = 7.33 Å, β = 104.5°, space group Cm is relatively abundant in this occurrence. Another polytype 3T, a = 5.51, c = 21.32 Å, space group P31 was also found. Both polytypes occur separately or in mixed, mostly 1M dominant crystals. Some 1M polytype crystals are twinned by order 3 reticular merohedry with a 120° rotation along the chex axis as the twin operation. A rare 1M+3T mixed crystal with 1M part twinned also contains a small amount of subfamily C. A possible presence of the most common 1T polytype of this subfamily cannot be confirmed because of overlap of the characteristic reflections with those of 3T. Several completely disordered crystals produced diffuse streaks instead of discrete characteristic reflections on the RS sections. The EPMA revealed Fe, Si, traces of Mg, Al, S, and Cl. One black crystal originally considered to be cronstedtite was identified as (111) twinned sphalerite. Some crystals of cronstedtite are covered partially by a honey-brown crust or small crystals of siderite.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Bailey, S. W. (1969). Polytypism of trioctahedral 1:1 layer silicates. Clays and Clay Minerals, 17, 355–371. https://doi.org/10.1346/CCMN.1969.0170605.

    Article  Google Scholar 

  2. Bailey, S.W. (1988). Polytypism of 1:1 layer silicates. Pp. 1–27 in: Hydrous Phyllosilicates (Exclusive of micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.

  3. Becker, W., & Lutz, H. D. (1978). Phase studies in the systems CoS-MnS, CoS-ZnS, and CoS-CdS. Materials Research Bulletin, 13, 907–911. https://doi.org/10.1016/0025-5408(78)90102-2.

    Article  Google Scholar 

  4. Bindi, L., & Paar, W. H. (2017). Jaszczakite, [(Bi, Pb)3S3][AuS2], a new mineral species from Nagybörzsöny. Hungary. European Journal of Mineralogy, 29(4), 673–677. https://doi.org/10.1127/ejm/2017/0029-2620.

    Article  Google Scholar 

  5. Dobosi, G., & Nagy, B. (1989). The occurrence of an Au-Bi sulphide in the Nagybörzsöny hydrothermal ore deposit, northern Hungary. Neues Jahrbuch für Mineralogie Monatshefte, 8–14.

  6. Dornberger-Schiff, K., & Ďurovič, S. (1975a). OD-interpretation of kaolinite-type structures - I: Symmetry of kaolinite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219–229. https://doi.org/10.1346/CCMN.1975.0230310.

    Article  Google Scholar 

  7. Dornberger-Schiff, K., & Ďurovič, S. (1975b). OD-interpretation of kaolinite-type structures - II: The regular polytypes (MDO-polytypes) and their derivation. Clays and Clay Minerals, 23, 231–246. https://doi.org/10.1346/CCMN.1975.0230311.

    Article  Google Scholar 

  8. Ďurovič, S. (1997). Cronstedtite-1M and coexistence of 1M and 3T polytypes. Ceramics-Silikáty, 41, 98–104.

    Google Scholar 

  9. Effenberger, H., Mereiter, K., & Zemann, J. (1981). Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with the discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, 156, 233–243. https://doi.org/10.1524/zkri.1981.156.3-4.233.

    Article  Google Scholar 

  10. Geiger, C. A., Henry, D. L., Bailey, S. W., & Maj, J. J. (1983). Crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 31, 97–108. https://doi.org/10.1346/CCMN.1983.0310203.

    Article  Google Scholar 

  11. Hybler, J. (1998). Polytypism of cronstedtite from Chvaletice and Litošice. Ceramics-Silikáty, 42, 130–131.

    Google Scholar 

  12. Hybler, J. (2014). Refinement of cronstedtite-1M. Acta Crystallographica, B70, 963–972. https://doi.org/10.1107/S2052520614020897.

    Article  Google Scholar 

  13. Hybler, J. (2016). Crystal structure of cronstedtite-6T2, a non-MDO polytype. European Journal of Mineralogy, 28, 777–788. https://doi.org/10.1127/ejm/2016/0028-2541.

    Article  Google Scholar 

  14. Hybler, J., Klementová, M., Jarošová, M., Pignatelli, I., Mosser-Ruck, R., & Ďurovič, S. (2018). Polytypes identification in trioctahedral layer silicates by electron diffraction and application to cronstedtite mineral synthetized by iron-clay interaction. Clays and Clay Minerals, 66, 379–402. https://doi.org/10.1346/CCMN.2018.064106.

    Article  Google Scholar 

  15. Hybler, J., Petříček, V., Ďurovič, S., & Smrčok, L. (2000). Refinement of the crystal structure of cronstedtite-1T. Clays and Clay Minerals, 48, 331–338. https://doi.org/10.1346/CCMN.2000.0480304.

    Article  Google Scholar 

  16. Hybler, J., Petříček, V., Fábry, J., & Ďurovič, S. (2002). Refinement of the crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 50, 601–613. https://doi.org/10.1346/000986002320679332.

    Article  Google Scholar 

  17. Hybler, J., & Sejkora, J. (2017). Polytypism of cronstedtite from Chyňava, Czech Republic. Journal of Geosciences, 62, 137–146. https://doi.org/10.3190/jgeosci.239.

    Article  Google Scholar 

  18. Hybler, J., Sejkora, J., & Venclík, V. (2016). Polytypism of cronstedtite from Pohled, Czech Republic. European Journal of Mineralogy, 28, 765–775. https://doi.org/10.1127/ejm/2016/0028-2532.

    Article  Google Scholar 

  19. Hybler, J., Števko, M., & Sejkora, J. (2017). Polytypism of cronstedtite from Nižná Slaná, Slovakia. European Journal of Mineralogy, 29, 91–99. https://doi.org/10.1127/ejm/2017/0029-2582.

    Article  Google Scholar 

  20. Kenngott, A. (1853). Das Mohs´sche Mineralsystem. Wien: Gerold & Sohn 164 pp.

    Google Scholar 

  21. Koch, S. (1958). The associated occurrence of three ZnS modifications in Gyöngyösoroszi. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 11, 11–22.

    Google Scholar 

  22. Koch, S., & Grasselly, G. (1953). The minerals of the sulphide ore-deposite of Nagybörzsöny. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 6, 1–21.

    Google Scholar 

  23. Kogure, T., Hybler, J., & Ďurovič, S. (2001). A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates. Clays and Clay Minerals, 49, 310–317. https://doi.org/10.1346/CCMN.2001.0490405.

    Article  Google Scholar 

  24. Kogure, T., Hybler, J., & Yoshida, H. (2002). Coexistence of two polytypic groups in cronstedtite from Lostwithiel, England. Clays and Clay Minerals, 50, 504–513. https://doi.org/10.1346/000986002320514226.

    Article  Google Scholar 

  25. Korpás, L., & Lang, B. (1993). Timing of volcanism and metallogenesis in the Börzsöny Mountains, Northern Hungary. Ore Geology Reviews, 8, 477–501.

    Article  Google Scholar 

  26. Müller, W. F., Kurat, G., & Kracher, A. (1979). Chemical and crystallographical study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 293–304.

    Article  Google Scholar 

  27. Nagy, B. (2002). Data for the mineralogical and geochemical knowledge of the precious metal minerals of the ore deposits and ore indications in the Börzsöny Mts. Földtani Közlöny, 132(3–4), 401–421 (In Hungarian with an English abstract).

    Google Scholar 

  28. Niita, E., Kimata, M., Hoshino, M., Echigo, T., Hamasaki, S., Nishida, N., Shimizu, M., & Akasaka, T. (2008). Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite. Journal of Mineralogical and Petrological Sciences, 103, 145–151. https://doi.org/10.2465/jmps.071022f.

    Article  Google Scholar 

  29. Paar, W. H., Putz, H., Topa, D., Roberts, A. C., Stanley, C. J., & Culetto, F. J. (2006). Jonassonite, Ag(Bi,Pb)5S4, a new mineral species from Nagybörzsöny, Hungary. The Canadian Mineralogist, 44, 1127–1136.

    Article  Google Scholar 

  30. Pantó, G., & Mikó, I. (1964). Nagybörzsöny ore deposit. Annals of Hungarian Geological Institute, 50, 1–153 (in Hungarian).

    Google Scholar 

  31. Pignatelli, I., Marrocchi, Y., Mugnaioli, E., Bourdelle, F., & Gounelle, M. (2017). Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochimica et Cosmochimica Acta, 209, 106–122.

    Article  Google Scholar 

  32. Pignatelli, I., Marrochi, Y., Vacher, L. G., Delon, R., & Gounelle, M. (2016). Multiple precursors of secondary mineralogical assemblages in CM chondrites. Meteoritic and Planetary Science, 51–4, 785–805. https://doi.org/10.1111/maps.12625.

    Article  Google Scholar 

  33. Pignatelli, I., Mosser-Ruck, R., Mugnaioli, E., Sterpenich, J., & Gemmi, M. (2020). The effect of the starting mineralogical mixture on the nature of Fe serpentines obtained during hydrothermal syntheses at 90°C. Clays and Clay Minerals, 68, 394–412. https://doi.org/10.1007/s42860-020-00080-y.

    Article  Google Scholar 

  34. Pignatelli, I., Mugnaioli, E., Hybler, J., Mosser-Ruck, R., Cathelineau, M., & Michau, N. (2013). A multi-technique characterisation of cronstedtite synthetized by iron-clay interaction in a step by step cooling procedure. Clays and Clay Minerals, 61, 277–289. https://doi.org/10.1346/CCMN.2013.0610408.

    Article  Google Scholar 

  35. Pignatelli, I., Mugnaioli, E., & Marrocchi, Y. (2018). Cronstedtite polytypes in the Paris meteorite. European Journal of Mineralogy. https://doi.org/10.1127/ejm/2018/0030-2713.

  36. Pouchou, J.L., & Pichoir, F. (1985). “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.

  37. Rigaku Oxford Diffraction (2018). CrysAlisPro, version 171.40.35a, Data collection and data reduction GUI.

  38. Sasvári, K. (1958). ZnS mineral with ZnS-3R crystal structure. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 11, 23–27.

    Google Scholar 

  39. Smrčok, L., Ďurovič, S., Petříček, V., & Weiss, Z. (1994). Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544–551. https://doi.org/10.1346/CCMN.1994.0420505.

    Article  Google Scholar 

  40. Steadman, R. (1964). The structure of trioctahedral kaolin-type silicates. Acta Crystallographica, 17, 924–927.

    Article  Google Scholar 

  41. Steadman, R., & Nuttall, P. M. (1963). Polymorphism in cronstedtite. Acta Crystallographica, 16, 1–8.

    Article  Google Scholar 

  42. Steadman, R., & Nuttall, P. M. (1964). Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404–406.

    Article  Google Scholar 

  43. Steinmann, J.J. (1820). Chemische Untersuchung des Cronstedtit’s, eines neuen Fossils von Příbram in Böhmen. Gottlieb Haase, Prague, 47 pp. (in German).

  44. Steinmann, J. J. (1821). Chemische Untersuchung des Cronstedtit‘s, eines neuen Fossils von Příbram in Böhmen. Journal für Chemie und Physik, 32, 69–100 (in German).

    Google Scholar 

  45. Szakáll, S., Fehér, B., & Tóth, L. (2016). Hungarian Minerals. GeoLitera, SZTE TTIK, Földrajzi és Földtudományi Intézet, 1–526 (In Hungarian).

  46. Szakáll, S., Zajzon, N., & Kristály, F. (2012). Unusual ikunolite from Nagybörzsöny ore deposit, Börzsöny Mts., Hungary. Acta Mineralogica-Petrographica, Abstract Series, 7, 134.

    Google Scholar 

  47. Wahle, M. W., Bujnowski, T. J., Guggenheim, S., & Kogure, T. (2010). Guidottiite, the Mn-analogue of cronstedtite: A new serpentine-group mineral from South Africa. Clays and Clay Minerals, 58, 364–376. https://doi.org/10.1346/CCMN.2010.0580307.

    Article  Google Scholar 

  48. Zajzon, N., Szakáll, S., Kristály, F., Hartai, É., & Fehér, B. (2014). Pb-Bi-(Ag)-sulphosalts from Nagybörzsöny, Hungary. 21st Meeting of the International Mineralogical Association, 136.

Download references

ACKNOWLEDGMENTS

The authors thank collector Gábor Koller for providing the sample. M. Jarošová checked the compositions of accompanying phases. L. Jilemnická read the manuscript critically. Valuable comments by two anonymous referees are appreciated. The study was supported by project No. LO1603 under the Ministry of Education, Youth and Sports National sustainability programme 1 of Czech Republic to JH, and by institutional funding of the National Museum as a research organization 00023272 under project DKRVO 2019-2023/1.II.b to ZD and JS.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiří Hybler.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 3 June 2020; revised 24 September 2020; AE: Georgios D. Chryssikos)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hybler, J., Dolníček, Z., Sejkora, J. et al. POLYTYPISM OF CRONSTEDTITE FROM NAGYBÖRZSÖNY, HUNGARY. Clays Clay Miner. 68, 632–645 (2020). https://doi.org/10.1007/s42860-020-00102-9

Download citation

Keywords

  • 1:1 Layer silicate
  • 1M and 3T polytypes
  • Cronstedtite
  • Polytypism
  • Single-crystal X-ray diffraction
  • Stacking disorder
  • Twinning