OPTICAL THEORY-BASED SIMULATION OF ATTENUATED TOTAL REFLECTION INFRARED SPECTRA OF MONTMORILLONITE FILMS

Abstract

Infrared analyses of clay mineral samples are usually performed by transmission techniques. While transmission measurements are easy and inexpensive, the sample preparation plays a critical role in the quality of the data. Alternatively, attenuated total reflection (ATR) provides a powerful and often simpler analysis method. However, the ATR spectra reveal significant differences when compared to transmission spectra sometimes leading to confusion in the interpretations. Indeed, optical effects play a prominent role in the ATR spectral profile and their identification is mandatory for obtaining quantitative information regarding molecular/particle orientation or film thickness. The objective of the present study was to perform exact spectral simulations of montmorillonite films by making use of optical theory, including the determination of the anisotropic optical constants from the experimental reflectance spectra by Kramers-Kronig (KK) transformation. This methodology was used: (1) to choose the appropriate optical conditions for advanced and reliable characterization of clay minerals; (2) to extract quantitative information such as the estimation of the film thickness; and (3) to discriminate optical phenomena (optical interferences) from chemical/structural features of the sample.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.

REFERENCES

  1. Amarasinghe, P. M., Katti, K. S., & Katti, D. R. (2008). Molecular hydraulic properties of montmorillonite: A polarized Fourier transform infrared spectroscopic study. Applied Spectroscopy, 62, 1303–1313.

    Article  Google Scholar 

  2. Aufort, J., Ségalen, L., Gervais, C., Brouder, C., & Balan, E. (2016). Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite. Physics and Chemistry of Minerals, 43, 615–626.

    Article  Google Scholar 

  3. Balan, E., Mauri, F., Lemaire, C., Brouder, C., Guyot, F., Saitta, A. M., & Devouard, B. (2002). Multiple ionic-plasmon resonances in naturally occurring multiwall nanotubes: infrared spectra of chrysotile asbestos. Physical Review Letters, 89, 177401.

    Article  Google Scholar 

  4. Balan, E., Delattre, S., Roche, D., Segalen, L., Morin, G., Guillaumet, M., Marc Blanchard, M., Lazzeri, M., Brouder, C., & Salje, E. K. H. (2011). Line-broadening effects in the powder infrared spectrum of apatite. Physics and Chemistry of Minerals, 38, 111–122.

    Article  Google Scholar 

  5. Bardwell, J. A., & Dignam, M. J. (1985). Extensions of the Kramers–Kronig transformation that cover a wide range of practical spectroscopic applications. The Journal of Chemical Physics, 83, 5468–5478.

    Article  Google Scholar 

  6. Berreman, D. W. (1963). Infrared absorption at longitudinal optic frequency in cubic crystal films. Physical Review, 130, 2193–2198.

    Article  Google Scholar 

  7. Bertie, J. E., & Lan, Z. (1996). An accurate modified Kramers–Kronig transformation from reflectance to phase shift on attenuated total reflection. The Journal of Chemical Physics, 105, 8502–8514.

    Article  Google Scholar 

  8. Boulet-Audet, M., Buffeteau, T., Boudreault, S., Daugey, N., & Pézolet, M. (2010). Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra. The Journal of Physical Chemistry B, 114, 8255–8261.

    Article  Google Scholar 

  9. Brigatti, M.F., Galán, E., & Theng, B.K.G. (2013). Structure and mineralogy of clay minerals. Pp. 21–81 in: Handbook of Clay Science (Vol. 5) (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5 Elsevier.

  10. Buffeteau, T., Blaudez, D., Péré, E., & Desbat, B. (1999). Optical constant determination in the infrared of uniaxially oriented monolayers from transmittance and reflectance measurements. The Journal of Physical Chemistry B, 103, 5020–5027.

    Article  Google Scholar 

  11. Dignam, M. J. (1988). Fourier transform polarization spectroscopy. Applied Spectroscopy Reviews, 24, 99–135.

    Article  Google Scholar 

  12. Dignam, M. J., & Mamiche-Afara, S. (1988). Determination of the spectra of the optical constants of bulk phases via Fourier transform ATR. Spectrochimica Acta Part A: Molecular Spectroscopy, 44, 1435–1442.

    Article  Google Scholar 

  13. Esposito, F., Colangeli, L., & Palomba, E. (2000). Infrared reflectance spectroscopy of Martian analogues. Journal of Geophysical Research: Planets, 105, 17643–17654.

    Article  Google Scholar 

  14. Farmer, V. C., & Russell, J. D. (1964). The infra-red spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.

    Article  Google Scholar 

  15. Fraser, R., & MacRae, T. (1973). Conformation in Fibrous Proteins and Related Synthetic Polypeptides. New York: Academic Press.

    Google Scholar 

  16. Glotch, T. D., & Rossman, G. R. (2009). Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 204, 663–671.

    Article  Google Scholar 

  17. Grégoire, B., Dazas, B., Hubert, F., Tertre, E., Ferrage, E., Grasset, L., & Petit, S. (2020). Orientation measurements of clay minerals by polarized attenuated total reflection infrared spectroscopy. Journal of Colloid and Interface Science, 567, 274–284.

    Article  Google Scholar 

  18. Hansen, W. N. (1965). Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells. Spectrochimica Acta, 21, 815–833.

    Article  Google Scholar 

  19. Hansen, W. N. (1968). Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. Journal of the Optical Society of America, 58, 380–390.

    Article  Google Scholar 

  20. Harrick, N. J. (1965). Electric field strengths at totally reflecting interfaces. Journal of the Optical Society of America, 55, 851–857.

    Article  Google Scholar 

  21. Harrick, N.J. & Beckmann, K.H. (1974). Internal reflection spectroscopy. Pp. 215–245 in: Characterization of Solid Surfaces (P.F. Kane and G.B. Larrabee, editors). Springer, Boston, Massachusetts, USA.

  22. Hasegawa, T. (2017). Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter. Japan: Springer.

    Google Scholar 

  23. Hind, A. R., Bhargava, S. K., & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR — the tool of choice. Advances in Colloid and Interface Science, 93, 91–114.

    Article  Google Scholar 

  24. Huang, J. B., & Urban, M. W. (1992). Evaluation and analysis of attenuated total reflectance FT-IR spectra using Kramers-Kronig transforms. Applied Spectroscopy, 46, 1666–1672.

    Article  Google Scholar 

  25. Iglesias, J. E., Ocaña, M., & Serna, C. J. (1990). Aggregation and matrix effects on the infrared spectrum of microcrystalline powders. Applied Spectroscopy, 44, 418–426.

    Article  Google Scholar 

  26. Johnston, C. T., & Premachandra, G. S. (2001). Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir, 17, 3712–3718.

    Article  Google Scholar 

  27. Karakassides, M. A., Petridis, D., & Gournis, D. (1997). Infrared reflectance study of thermally treated Li– and Cs-montmorillonites. Clays and Clay Minerals, 45, 649–658.

    Article  Google Scholar 

  28. Lambert, J.-F. (2008). Adsorption and polymerization of amino acids on mineral surfaces: A review. Origins of Life and Evolution of Biospheres, 38, 211–242.

    Article  Google Scholar 

  29. Larentzos, J. P., Greathouse, J. A., & Cygan, R. (2007). An ab initio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite. The Journal of Physical Chemistry C, 111, 12752–12759.

    Article  Google Scholar 

  30. Lefèvre, G., Preočanin, T., & Lützenkirchen, J. (2012). Attenuated total reflection-Infrared spectroscopy applied to the study of mineral–aqueous electrolyte solution interfaces: a general overview and a case study. Pp. 97–122 in: Infrared Spectroscopy (T. Theophile, editor). Intech.

  31. Margulies, L., Rozen, H., & Banin, A. (1988). Use of X-Ray powder diffraction and linear dichroism methods to study the orientation of montmorillonite clay particles. Clays and Clay Minerals, 36, 476–479.

    Article  Google Scholar 

  32. Milosevic, M. (2004). Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: John Wiley & Sons.

    Google Scholar 

  33. Ohta, K., & Ishida, H. (1988). Comparison among several numerical integration methods for Kramers-Kronig transformation. Applied Spectroscopy, 42, 952–957.

    Article  Google Scholar 

  34. Plaskett, J. S., & Schatz, P. N. (1963). On the Robinson and Price (Kramers—Kronig) method of interpreting reflection data taken through a transparent window. The Journal of Chemical Physics, 38, 612–617.

    Article  Google Scholar 

  35. Polubesova, T., & Chefetz, B. (2014). DOM-affected transformation of contaminants on mineral surfaces: A Review. Critical Reviews in Environmental Science and Technology, 44, 223–254.

    Article  Google Scholar 

  36. Ras, R. H. A., Johnston, C. T., Franses, E. I., Ramaekers, R., Maes, G., Foubert, P., De Schryver, F. C., & Schoonheydt, R. A. (2003). Polarized infrared study of hybrid Langmuir−Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19, 4295–4302.

    Article  Google Scholar 

  37. Ras, R. H. A., Németh, J., Johnston, C. T., Dékány, I., & Schoonheydt, R. A. (2004a). Infrared reflection absorption spectroscopy study of smectite clay monolayers. Thin Solid Films, 466, 291–294.

    Article  Google Scholar 

  38. Ras, R. H. A., Németh, J., Johnston, C. T., Dékány, I., & Schoonheydt, R. A. (2004b). Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir–Blodgett monolayers containing clay minerals. Physical Chemistry Chemical Physics, 6, 5347–5352.

    Article  Google Scholar 

  39. Ras, R. H. A., Németh, J., Johnston, C. T., DiMasi, E., Dékány, I., & Schoonheydt, R. A. (2004c). Hybrid Langmuir–Blodgett monolayers containing clay minerals: effect of clay concentration and surface charge density on the film formation. Physical Chemistry Chemical Physics, 6, 4174–4184.

    Article  Google Scholar 

  40. Ras, R. H. A., Schoonheydt, R. A., & Johnston, C. T. (2007a). Relation between s-Polarized and p-Polarized Internal Reflection Spectra: Application for the spectral resolution of perpendicular vibrational modes. The Journal of Physical Chemistry A, 111, 8787–8791.

    Article  Google Scholar 

  41. Ras, R. H. A., Umemura, Y., Johnston, C. T., Yamagishi, A., & Schoonheydt, R. A. (2007b). Ultrathin hybrid films of clay minerals. Physical Chemistry Chemical Physics, 9, 918–932.

    Article  Google Scholar 

  42. Roush, T., Pollack, J., & Orenberg, J. (1991). Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite. Icarus, 94, 191–208.

    Article  Google Scholar 

  43. Schampera, B., & Dultz, S. (2009). Determination of diffusive transport in HDPy-montmorillonite by H2O–D2O exchange using in situ ATR-FTIR spectroscopy. Clay Minerals, 44, 249–266.

    Article  Google Scholar 

  44. Schampera, B., Šolc, R., Tunega, D., & Dultz, S. (2016). Experimental and molecular dynamics study on anion diffusion in organically modified bentonite. Applied Clay Science, 120, 91–100.

    Article  Google Scholar 

  45. Stumm, W. (1997). Reactivity at the mineral–water interface: dissolution and inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 143–166.

    Article  Google Scholar 

  46. Tolstoy, V.P., Chernyshova, I., & Skryshevsky, V.A. (2003). Handbook of Infrared Spectroscopy of Ultrathin Films: Wiley.

  47. Wilson Edgar, B. (1980). Molecular Vibrations: the Theory of Infrared and Raman Vibrational Spectra. New York: Dover.

    Google Scholar 

  48. Yamamoto, K., & Ishida, H. (1994). Interpretation of reflection and transmission spectra for thin films: reflection. Applied Spectroscopy, 48, 775–787.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The CNRS interdisciplinary “défi Needs” funding program (Project DARIUS) is acknowledged for providing financial support for this study. The authors acknowledge financial support from the European Union (ERDF) and "Région Nouvelle Aquitaine." The authors thank J.W. Stucki (Editor-in-Chief), G. Chryssikos (Associate Editor), the anonymous reviewers, and C.T. Johnston for their comments which greatly improved the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian Grégoire.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grégoire, B., Dazas, B., Leloup, M. et al. OPTICAL THEORY-BASED SIMULATION OF ATTENUATED TOTAL REFLECTION INFRARED SPECTRA OF MONTMORILLONITE FILMS. Clays Clay Miner. 68, 175–187 (2020). https://doi.org/10.1007/s42860-020-00073-x

Download citation

Keywords

  • Attenuated total reflectance
  • Clay minerals film
  • Infrared optical constants
  • Numerical simulation
  • Thickness determination