PURIFICATION OF TURKISH BENTONITES AND INVESTIGATION OF THE CONTACT ANGLE, SURFACE FREE ENERGY AND ZETA POTENTIAL PROFILES OF ORGANO-BENTONITES AS A FUNCTION OF CTAB CONCENTRATION

Abstract

Purification of raw bentonites and organo-bentonite preparations is sometimes required for industrial use. Zeta (electrokinetic) potential (ζ), contact angle (wettability/hydrophobicity), and surface free energy (SFE) are important surface characteristics and vary significantly according to the applied surfactant concentration when preparing organo-bentonite. Changes in these characteristics determine the stability, behavior, and efficiency of organo-bentonites in various applications such as adsorption, composite materials, and drug-delivery systems. Knowing how much surfactant should be used to prepare organo-bentonite is, therefore, critical. The purpose of the present study was to determine the effect of concentration of the cationic surfactant cetyltrimethylammonium bromide (CTAB) adsorbed in organo-bentonite (prepared from two local and commercial raw bentonites with potential for use in adsorbent and composite materials) on the ζ potential, contact angle, and SFE profiles. The raw bentonites were purified using sedimentation and centrifugation techniques prior to preparation of the organo-bentonite. The purification results were evaluated in light of X-ray diffraction (XRD), cation exchange capacity (CEC), free swelling volume (FSV), X-ray fluorescence (XRF), and particle-size analysis data. Most of the gangue minerals (feldspar, calcite, clinoptilolite, opal, quartz, and mica) having particle size >5 μm were removed from the raw bentonites by using a one-stage sedimentation or a Falcon gravity separator (FGS). Higher yields (68.8% and 81.3% for two bentonites) were obtained with the FGS compared to sedimentation while purification levels were almost the same. ζ changed greatly from –35 mV (and –40 mV) toward 38 mV (and 40 mV) with increasing CTAB concentrations. Similar profiles were also obtained for wettability; maximum contact angles for organo-bentonites were measured as ~72–73o, while they were 12.65 and 14.1o for two purified and unmodified bentonites. SFEs were calculated using contact-angle data, and decreased to minimum values of 41.5–43.6 mJ/m2 from 78.6–78.2 mJ/m2 upon treatment of raw bentonites with CTAB. 100–130% CEC concentration was sufficient to prepare organo-bentonites with maximum hydrophobicity and positively charged surfaces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Barany, S., Meszaros, R., Taubaeva, R., & Musabekov, K. (2015). Electrosurface properties of kaolin and bentonite particles in solutions of electrolytes and surfactants. Colloid Journal, 77, 692–697.

    Article  Google Scholar 

  2. Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of Clay Science (1246 pp). Amsterdam: Elsevier.

    Google Scholar 

  3. Bergaya, F., Jaber, M., & Lambert, J. F. (2011). Organophilic clay minerals. In M. Galimberti (Ed.), Rubber Clay Nanocomposites-Science, Technology and Applications (pp. 45–86). New York: John Wiley and Sons.

    Google Scholar 

  4. Bianchi, A. E., Fernández, M., Pantanetti, M., Viña, R., Torriani, I., Torres Sánchez, R. M., & Punte, G. (2013). ODTMA+ and HDTMA+ organo-montmorillonites characterization: New insight by WAXS, SAXS and surface charge. Applied Clay Science, 83–84, 280–285.

    Article  Google Scholar 

  5. Boylu, B., Çinku, K., Esenli, F., & Çelik, M. S. (2010). The separation efficiency of Na-bentonite by hydrocyclone and characterization of hydrocyclone products. International Journal of Mineral Processing, 94, 196–202.

    Article  Google Scholar 

  6. Boylu, F., Hojiyev, R., Ersever, G., Ulcay, Y., & Çelik, M. S. (2012). Production of ultrapure bentonite clays through centrifugation techniques. Separation Science and Technology, 47, 842–849.

    Article  Google Scholar 

  7. Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification, Monograph 5 (pp. 305–360). London: Mineralogical Society.

    Google Scholar 

  8. Bulut, G., Chimeddorj, M., Esenli, F., & Çelik, M. S. (2009). Production of desiccants from Turkish bentonites. Applied Clay Science, 46, 141–147.

    Article  Google Scholar 

  9. Carraro, A., De Giacomo, A., Giannossi, M. L., Medici, L., Muscarella, M., Palazzo, L., Quaranta, V., & Tateo, F. (2014). Clay minerals as adsorbents of aflatoxin M1 from contaminated milk and effects on milk quality. Applied Clay Science, 88, 92–99.

    Article  Google Scholar 

  10. Çelik, M.S. (2004). Electrokinetic behavior of clay surfaces. Pp. 58–89 in: Clay Surfaces: Fundementals and Aplications (F. Wypych and K.G. Satyanarayana, editors). Elsevier, The Netherlands.

  11. Chenliang, P., Fanfei, M., Lingyun, L., & Chen, J. (2017). The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: a DFT study. Surface and Interface Analysis, 49, 267–277.

    Article  Google Scholar 

  12. Erol, I., Devrim, D. N., Ciftci, H., Ersoy, B., & Cigerci, I. H. (2017). Novel functional copolymers based on glycidyl methacrylate: Synthesis, characterization, and polymerization kinetics. Journal of Macromolacular Science, 54, 434–445.

    Article  Google Scholar 

  13. Ersoy, B., & Celik, M. S. (2004). Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite. Environmental Technology, 25, 341–348.

    Article  Google Scholar 

  14. Falaras, P., Kovanis, I., Lezou, F., & Seiragakis, G. (1999). Cottonseed oil bleaching by acid activated montmorillonite. Clay Minerals, 34, 221–232.

    Article  Google Scholar 

  15. Fatimah, I., & Huda, T. (2013). Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Applied Clay Science, 74, 115–120.

    Article  Google Scholar 

  16. Fowkes, F. M. (1962). Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. Journal of Physical Chemistry, 66, 382–382.

    Article  Google Scholar 

  17. Gong, Z., Liao, L., Lv, G., & Wang, X. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294–300.

    Article  Google Scholar 

  18. Grim, R. E. (1968). Clay Mineralogy. International series in the earth and planetary sciences (596 pp). New York: Mc Graw-Hill Book Co. Inc..

  19. Haloi, S., Goswami, P., & Das, D. K. (2013). Differentiating response of 2,7-dichlorofluorescein intercalated CTAB modified Na-MMT clay matrix towards dopamine and ascorbic acid investigated by electronic, fluorescence spectroscopy and electrochemistry. Applied Clay Science, 77–78, 79–82.

    Article  Google Scholar 

  20. Harward, M. E., & Brindley, G. W. (1965). Swelling properties of synthetic smectites. Clays and Clay Minerals, 13, 209–222.

    Article  Google Scholar 

  21. Hayakawa, T., Minase, M., Fujita, K.-I., & Ogawa, M. (2016). Modified method for bentonite purification and characterization; A Case Study Using Bentonite from Tsunagi Mine, Niigata, Japan. Clays and Clay Minerals, 64, 275–282.

    Article  Google Scholar 

  22. Hojiyev, R., Ersever, G., Karaağaçlıoğlu, İ. E., Karakaş, F., & Boylu, F. (2016). Changes on montmorillonite characteristics through modification. Applied Clay Science, 127–128, 105–110.

    Article  Google Scholar 

  23. Hojiyev, R., Ulcay, Y., & Çelik, M. S. (2017). Development of a clay-polymer compatibility approach for nanocomposite applications. Applied Clay Science, 146, 548–556.

    Article  Google Scholar 

  24. Houhoune, F., Nibou, D., Chegrouche, S., & Menacer, S. (2016). Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. Journal of Environmental Chemical Engineering, 4, 3459–3467.

    Article  Google Scholar 

  25. Jai Prakash, B. S. (2004). Surface thermodynamics of clays. In F. Wypych & K. G. Satyanarayana (Eds.), Clay Surfaces: Fundamentals and Applications (pp. 91–117). The Netherlands: Elsevier.

    Google Scholar 

  26. Jayrajsinh, S., Shankar, G., Pharm, M., Agrawal, Y. K., & Bakre, L. (2017). Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. Journal of Drug Delivery Science and Technology, 39, 200–209.

    Article  Google Scholar 

  27. Kaelble, D. H. (1970). Dispersion-polar surface tension properties of organic solids. The Journal of Adhesion, 2, 66–81.

    Article  Google Scholar 

  28. Kahr, G., & Madsen, F. T. (1995). Determination of the cation exchange capacity and the surface area of bentonite, illite, and kaolinite by methylene blue adsorption. Applied Clay Science, 9, 327–336.

    Article  Google Scholar 

  29. Kaufhold, S., Chryssikos, G. D., Kacandes, G., Gionis, V., Ufer, K., & Dohrmann, R. (2019). Geochemical and mineralogical characterisation of smectites from the Ventzia basin, western Macedonia, Greece. Clay Minerals, 54, 95–107.

    Article  Google Scholar 

  30. Keller, W. D., Reynolds, R. C., & Inoue, A. (1986). Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clays and Clay Minerals, 34, 187–197.

    Article  Google Scholar 

  31. Lagaly, G., & Dekany, I. (2013). Colloid clay science, Pp. 243–345 in: Developments in Clay Science (G. Lagaly and F. Bergaya, editors). Developments in Clay Science, 5, The Netherlands: Elsevier.

  32. Lagaly, G., Ogawa, M., & Dekany, I. (2013). Clay mineral-organic interactions (G. Lagaly and F. Bergaya, editors). Developments in Clay Science, 5 The Netherlands: Elsevier. pp. 435–474.

  33. Lee, S. Y., & Kim, S. J. (2002). Expansion of Smectite by Hexadecyltrimethylammonium. Clays and Clay Minerals, 50, 435–445.

    Article  Google Scholar 

  34. Liang, H., Long, Z., Yang, S., & Dai, L. (2015). Organic modification of bentonite and its effect on rheological properties of paper coating. Applied Clay Science, 104, 106–109.

    Article  Google Scholar 

  35. Majdan, M., Pikus, S., Gajowiak, A., Sternik, D., & Zięba, E. (2010). Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. Journal of Hazardous Materials, 184, 662–670.

    Article  Google Scholar 

  36. Moslemizadeh, A., Aghdam, S. K., Shahbazi, K., Aghdam, H. K., & Alboghobeish, F. (2016). Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Applied Clay Science, 127–128, 111–122.

    Article  Google Scholar 

  37. Nones, J., Riella, H. G., Trentin, A. G., & Nones, J. (2015). Effects of bentonite on different cell types: A brief review. Applied Clay Science, 105–106, 225–230.

    Article  Google Scholar 

  38. Orucoglu, E., & Haciyakupoglu, S. (2015). Bentonite modification with hexadecylpyridinium and aluminum polyoxy cations and its effectiveness in Se (IV) removal. Journal of Environmental Management, 160, 30–38.

    Article  Google Scholar 

  39. Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13, 1741–1747.

    Article  Google Scholar 

  40. Rytwo, G., Serban, C., Nir, S., & Margulies, L. (1991). Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays and Clay Minerals, 39, 551–555.

    Article  Google Scholar 

  41. Schampera, B., Šolc, R., Tunega, D., & Dultz, S. (2016). Experimental and molecular dynamics study on anion diffusion in organically modified bentonite. Applied Clay Science, 120, 91–100.

    Article  Google Scholar 

  42. Shah, L. A., Valenzuela, M. G. S., Ehsan, A. M., Díaz, F. R. V., & Khattak, N. S. (2013). Characterization of Pakistani purified bentonite suitable for possible pharmaceutical application. Applied Clay Science, 83–84, 50–55.

    Article  Google Scholar 

  43. Taylor, R. L. (1985). Cation exchange in clays and mudrocks by methylene blue. Journal of Chemical Technology and Biotechnology, 35A, 195–207.

    Google Scholar 

  44. van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Reviews, 88, 927–941.

    Article  Google Scholar 

  45. Veiskarami, M., Sarvi, M. N., & Mokhtari, A. R. (2016). Influence of the purity of montmorillonite on its surface modification with an alkyl-ammonium salt. Applied Clay Science, 120, 111–120.

    Article  Google Scholar 

  46. Velde, B. (1992). Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance (198 pp). London: Springer.

    Google Scholar 

  47. Yang, J. H., Lee, J. H., Ryu, H. J., Elzatahry, A. A., Alothman, Z. A., & Choy, J. H. (2016). Drug–clay nanohybrids as sustained delivery systems. Applied Clay Science, 130, 20–32.

    Article  Google Scholar 

  48. Yeşilyurt, Z., Boylu, F., Çinku, K., Esenli, F., & Çelik, M. S. (2014). Simultaneous purification and modification process for organobentonite production. Applied Clay Science, 95, 176–181.

    Article  Google Scholar 

  49. Yıldız, A., & Kuşcu, M. (2007). Mineralogy, chemistry and physical properties of bentonites from Başören, Kütahya, W Anatoloia, Turkey. Clay Minerals, 42, 399–414.

    Article  Google Scholar 

  50. Yılmaz, N., & Yapar, S. (2004). Adsorption properties of tetradecyl- and hexadecyltrimethylammonium bentonites. Applied Clay Science, 27, 223–228.

    Article  Google Scholar 

  51. Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Applied Clay Science, 97–98, 222–234.

    Article  Google Scholar 

  52. Zhang, J., Li, L., Xu, J., & Sun, D. (2014). Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid & Polymer Science, 292, 441–447.

    Article  Google Scholar 

  53. Zhou, C. H. (2011). An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Applied Clay Science, 53, 87–96.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported financially by Afyon Kocatepe University, Scientific Research Project (BAP), Project No: 18.FEN.BIL.06 and 18.KARIYER.107. The authors are grateful to the journal's editors and reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Çiftçi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çiftçi, H., Ersoy, B. & Evcin, A. PURIFICATION OF TURKISH BENTONITES AND INVESTIGATION OF THE CONTACT ANGLE, SURFACE FREE ENERGY AND ZETA POTENTIAL PROFILES OF ORGANO-BENTONITES AS A FUNCTION OF CTAB CONCENTRATION. Clays Clay Miner. (2020). https://doi.org/10.1007/s42860-020-00070-0

Download citation

Keywords

  • –Bentonite
  • Contact angle
  • Montmorillonite
  • Organo-bentonite
  • Purification
  • Surface free energy
  • Zeta potential