Traveling Wave Type Multi-Degree-of-Freedom Spherical Ultrasonic Motor with Built-in Stators


A multi-degree-of-freedom spherical ultrasonic motor with built-in traveling wave stators is proposed, and each traveling wave stator can be controlled independently, the three-degree-of-freedom movement of the spherical rotor is realized by the coordinated control of the three traveling wave stators and the spatial arrangement of the support structures. The motor also has a built-in pre-pressure adjustment structure, which can adjust the pre-pressure of three stators at the same time and make them the same size. The structure and working principle of the motor are expounded in detail. The structure and working principle of the motor are expounded in detail. The finite element method is used to analyze the modal of the traveling wave stator, and the transient trajectory of the driving part is simulated. Finally, the working principle was verified on the prototype, and the mechanical output performance of the prototype was tested: when the excitation voltage of the motor is 400 V and the preload is 100 N, the maximum speed is 45.6 rad/min, the maximum speed output torque is 1.265 Nm; the maximum deflection angle is 43°, and the maximum deflection speed is 56.3 rad/min, the maximum deflection torque is 1.76 Nm, achieves high torque and multiple-degrees-of-freedom. The motor has the advantages of large output force, high integration, and adjustable preload.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Liu Y, Chen W, Yang X, Liu J (2014) A rotary piezoelectric actuator using the third and fourth bending vibration modes. IEEE Trans Ind Electron 61(8):4366–4373

    Article  Google Scholar 

  2. 2.

    He S, Chiarot PR, Park S (2011) A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 58(5):1049–1061

    Article  Google Scholar 

  3. 3.

    Evon S, Schiferl R (2005) Direct-drive induction motors: using an induction motor as an alternative to a motor with reducer. IEEE Ind Appl Mag 11(4):45–51

    Article  Google Scholar 

  4. 4.

    Chen W, Tian X, Xue K, Chen S, Hongpeng Yu (2019) An easily fabricated linear piezoelectric actuator using sandwich longitudinal vibrators with four driving feet. IEEE Access 7:4506–4515

    Article  Google Scholar 

  5. 5.

    Liu J, Liu Y, Zhao L, Dongmei Xu, Chen W, Deng J (2018) Design and experiments of a single-foot linear piezoelectric actuator operated in a stepping mode. IEEE Trans Ind Electron 65(10):8063–8071

    Article  Google Scholar 

  6. 6.

    Xu D, Liu Y, Shi S, Liu J, Chen W, Wang L (2018) Development of a nonresonance piezoelectric motor with nanometer resolution driving ability. IEEE/ASME Trans Mechatron 23(1):444–451

    Article  Google Scholar 

  7. 7.

    Hariri HH, Soh GS, Foong S, Wood KL (2017) Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion. IEEE Trans Robot 33(3):742–747

    Article  Google Scholar 

  8. 8.

    Lin FJ, Hung YC, Chen SY (2009) FPGA-based computed force control system using Elman neural network for linear ultrasonic motor. IEEE Trans Ind Electron 56(4):1238–1253

    Article  Google Scholar 

  9. 9.

    Wai RJ, Lee JD (2008) Comparison of voltage-source resonance driving schemes for a linear piezoelectric ceramic motor. IEEE Trans Ind Electron 55(2):871–879

    Article  Google Scholar 

  10. 10.

    Gu GY, Zhu LM, Su CY, Ding H, Fatikow S (2015) Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages. IEEE/ASME Trans Mechatron 20(4):1956–1965

    Article  Google Scholar 

  11. 11.

    Wang YJ, Lee C, Jiang YB, Fu KC (2017) Design and dynamic analysis of a piezoelectric linear stage for pipetting liquid samples. Smart Mater Struct 26(6):065004

    Article  Google Scholar 

  12. 12.

    Haojian Lu, Shang W, Xie H, Shen Y (2018) Ultrahigh-precision rotational positioning under a microscope: nanorobotic system, modeling, control, and applications. IEEE Trans Robot 34(2):497–507

    Article  Google Scholar 

  13. 13.

    Zhu WL, Zhu Z, He YL, Ehmann K, Ju B, Li S (2017) Development of a novel 2-D vibration-assisted compliant cutting system for surface texturing. IEEE/ASME Trans Mechatron 22(4):1796–1806

    Article  Google Scholar 

  14. 14.

    Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a "smart" handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20(21):23414–23421

    Article  Google Scholar 

  15. 15.

    Rong W, Liang S, Wang L, Zhang S, Zhang W (2017) Model and control of a compact long-travel accurate-manipulation platform. IEEE/ASME Trans Mechatron 22(1):402–411

    Article  Google Scholar 

  16. 16.

    Zhijiang D, Shi R, Dong W (2014) A piezo-actuated high-precision flexible parallel pointing mechanism: conceptual design, development, and experiments. IEEE Trans Robot 30(1):131–137

    Article  Google Scholar 

  17. 17.

    Chen WM, Liu TS (2013) Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators. Mechatronics 23(8):1163–1170

    Article  Google Scholar 

  18. 18.

    Nakajima S, Kajiwara H, Aoyagi M, Tamura H, Takano T (2016) Study on spherical stator for multi-degree-of-freedom ultrasonic motor. Jpn J Appl Phys 55(7):S1

    Google Scholar 

  19. 19.

    Chang K-T, Ouyang M (2006) Rotary ultrasonic motor driven by a disk-shaped ultrasonic actuator. IEEE Trans Ind Electron 53(3):831–837

    Article  Google Scholar 

  20. 20.

    Chung SW, Chau KT (2008) A new compliance control approach for traveling-wave ultrasonic motors. IEEE Trans Ind Electron 55(1):302–311

    Article  Google Scholar 

  21. 21.

    Jeong SS, Cheon SK, Kim MH, Song JS, Park TG (2012) Motional characteristics of ultrasonic motor using Λ (lambda)-shaped stator. Ceram Int 39:S715–S719

    Article  Google Scholar 

  22. 22.

    Mashimo T (2016) Micro ultrasonic motor using a cube with a side length of 0.5 mm. IEEE/ASME Trans Mechatron 21(2):1189–1192

    MathSciNet  Article  Google Scholar 

  23. 23.

    Sente P, Labrique FM, Alexandre P (2012) Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. IEEE Trans Industr Electron 59(4):1971–1979

    Article  Google Scholar 

  24. 24.

    Huang S, Tan KK, Lee TH (2009) Adaptive sliding-mode control of piezoelectric actuators. IEEE Trans Ind Electron 56(9):3514–3522

    Article  Google Scholar 

  25. 25.

    Geng RR, Mills JK, Yao ZY (2016) Design and analysis of a novel 3-DOF spatial parallel microgripper driven by LUMs. Robot Comput Integr Manuf 42:147–155

    Article  Google Scholar 

  26. 26.

    Fu P (2007) Research on the fundamental technology of MDOF traveling-wave type ultrasonic motor. Ph.D. dissertation, Colle. Elect. Eng, Zhejiang Uni., Zhejiang

  27. 27.

    Goda Y, Koyama D, Nakamura K (2009) Design of multi-degree-of-freedom ultrasonic micromotors. Jpn J Appl Phys 48(7):07GM06

    Article  Google Scholar 

  28. 28.

    Mashimo T, Toyama S, Ishida H (2009) Design and implementation of spherical ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 56(11):2514–2521

    Article  Google Scholar 

  29. 29.

    Khoo TF, Dang DH, Friend J, Oetomo D, Yeo LY (2009) Triple degree-of-freedom piezoelectric ultrasonic micromotor via flexural-axial coupled vibration. IEEE Trans Ultrason Ferroelectr Freq Control 56(8):1716–1724

    Article  Google Scholar 

  30. 30.

    Ting Y, Tsai YR, Hou BK, Lin SC, Lu CC (2010) Stator design of a new type of spherical piezoelectric motor. IEEE Trans Ultrason Ferroelectr Freq Control 57(10):2334–2342

    Article  Google Scholar 

  31. 31.

    Shi S, Xiong H, Liu Y, Chen W, Liu J (2017) A ring-type multi-DOF ultrasonic motor with four feet driving consistently. Ultrasonics 76:234–244

    Article  Google Scholar 

  32. 32.

    Senjyu T, Kashiwagi T, Uezato K (2001) Position control of ultrasonic motors using MRAC with dead-zone compensation. IEEE Trans Ind Electron 48(6):1278–1285

    Article  Google Scholar 

Download references


This work was funded by National Natural Science Foundation of China (CN) (Grant Numbers 51877070, 51577048, 51637001).

Author information



Corresponding author

Correspondence to Zheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, L., Wang, Z. et al. Traveling Wave Type Multi-Degree-of-Freedom Spherical Ultrasonic Motor with Built-in Stators. J. Electr. Eng. Technol. 15, 1723–1733 (2020).

Download citation


  • Ultrasonic motor
  • Traveling wave drive
  • Multi-degree of freedom motor
  • Spherical rotor
  • Pre-stress