Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning


In medical imaging, extraction of brain tumor region in the magnetic resonance image (MRI) is not sufficient, but finding the tumor extension is necessary to plan best treatment to improve the survival rate as it depends on tumor’s size, location, and patient’s age. Manually extracting the brain tumor sub-regions from MRI volume is tedious, time consuming and the inherently complex brain tumor images requires a proficient radiologist. Thus, a reliable multi-modal deep learning models are proposed for automatic segmentation to extract the sub-regions like enhancing tumor (ET), tumor core (TC), and whole tumor (WT). These models are constructed on the basis of U-net and VGG16 architectures. The whole tumor is obtained by segmenting T2-weighted images and cross-check the edema’s extension in T2 fluid attenuated inversion recovery (FLAIR). ET and TC are both extracted by evaluating the hyper-intensities in T1-weighted contrast enhanced images. The proposed method has produced better results in terms of dice similarity index, Jaccard similarity index, accuracy, specificity, and sensitivity for segmented sub regions. The experimental results on BraTS 2018 database shows the proposed DL model outperforms with average dice coefficients of 0.91521, 0.92811, 0.96702, and Jaccard coefficients of 0.84715, 0.88357, 0.93741 for ET, TC, and WT respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Wang Q et al (2019) Heterogeneity diffusion imaging of gliomas: initial experience and validation. PloS one 14(11):1–15

    Google Scholar 

  2. 2.

    Ostrom QT et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology 21(Supplement_5):1–100

    Article  Google Scholar 

  3. 3.

    Xie K et al (2005) Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 56(1):12–19

    Article  Google Scholar 

  4. 4.

    Wang G et al (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Intl MICCAI brainlesion workshop, Springer, Cham, pp 178–190

  5. 5.

    Akkus Z et al (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30(4):449–459

    Article  Google Scholar 

  6. 6.

    Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  7. 7.

    Bach Cuadra M et al (2004) Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans Med Imaging 23:1301–1314

    Article  Google Scholar 

  8. 8.

    Ronneberger O et al (2015) U-net: convolutional networks for biomedical image segmentation. In: Int. conf. on medical image computing and computer-assisted intervention, Springer, Cham, pp 234–241

  9. 9.

    Işın A et al (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Proc Comput Sci 102:317–324

    Article  Google Scholar 

  10. 10.

    Pereira S et al (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  11. 11.

    Dong H et al (2017) Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. In: Annu conf. on medical image understanding and anal., Springer, Cham, pp 506–517

  12. 12.

    Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  13. 13.

    Kamnitsas K et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Anal 36:61–78

    Article  Google Scholar 

  14. 14.

    Li Q et al (2018) Glioma segmentation using a novel unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553

    Google Scholar 

  15. 15.

    Myronenko A (2018) 3D MRI brain tumor segmentation using autoencoder regularization. In: Int. MICCAI brainlesion workshop, Springer, Cham, pp 311–320

  16. 16.

    Iqbal S et al (2018) Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Tech 81(4):419–427

    Article  Google Scholar 

  17. 17.

    Isensee F et al (2018) No new-net. In: International MICCAI brainlesion workshop, Springer, Cham, pp 234–244

  18. 18.

    Mehta R, Tal A (2018) 3D U-net for brain tumour segmentation. In: Int. MICCAI brainlesion workshop, Springer, Cham, pp 254–266

  19. 19.

    Stawiaski J (2018) A pretrained densenet encoder for brain tumor segmentation. In: Int. MICCAI brainlesion workshop, Springer, Cham, pp 105–115

  20. 20.

    Feng X et al (2018) Brain tumor segmentation using an ensemble of 3D U-nets and overall survival prediction using radiomic features. In: Int. MICCAI brainlesion workshop, Springer, Cham, pp 279–288

  21. 21.

    McKinley R et al (2018) Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Int. MICCAI brainlesion workshop, Springer, Cham, pp 456–465

  22. 22.

    Yang T, Song J, Li L (2019) A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI. Biocybern Biomed Eng 39:613–623

    Article  Google Scholar 

  23. 23.

    Hu K et al (2019) Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access 7:92615–92629

    Article  Google Scholar 

  24. 24.

    Bakas S et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629

  25. 25.

    Milletari F et al (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th Int. conf. on 3D vision (3DV), IEEE, pp 565–571

  26. 26.

    Drozdzal M et al (2016) The importance of skip connections in biomedical image segmentation. In: Deep learning and data labeling for medical appls., Springer, Cham, pp 179–187

  27. 27.

    Srinivas B, Rao GS (2018) A hybrid CNN-KNN model for MRI brain tumor classification. In: Int J Recent Technol Eng (IJRTE), vol 8, issue 2, July 2019 ISSN: 2277–3878

Download references

Author information



Corresponding author

Correspondence to B. Srinivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivas, B., Sasibhushana Rao, G. Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning. J. Electr. Eng. Technol. 15, 1899–1909 (2020).

Download citation


  • Automatic brain tumor segmentation
  • CNN
  • Deep learning
  • Enhancing tumor
  • MRI brain tumor image processing
  • Sub regions of brain tumor segmentation