Structural Toughness Under Noise: An Efficient No-Reference Image Distortion Assessment for Blur and Noise

A Correction to this article was published on 25 September 2020

This article has been updated

Abstract

In image denoising and reconstruction problems, it is useful to monotonically quantify the distortions in images representing the same scene. For this purpose, we propose a training-free no-reference image distortion assessment method for both blur and noise. The method is based on the observation that the structural similarity between an input image and its shifted-and-noised copy is related to the levels of blur and noise distorting the input image. Computing a noised copy would require a random number generation, but assuming virtual noise independent from the input image, we derived the method that does not require computing actual noised copy. In our experiments of assessing the singly/multiply distorted images representing the same scene, the proposed method generally showed better monotonicity than competing state-of-the-art methods. The proposed method runs about 80 times faster than those competing methods and it can assess local regions of the input image, which makes it useful in spatially adaptive denoising applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 25 September 2020

    Unfortunately the article contains some mistakes. The text should be read.

References

  1. 1.

    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  2. 2.

    Wang Z, Simoncelli EP, Bovik AC (2003) Multi-scale structural similarity for image quality assessment. In: Proc. IEEE Asilomar conf. on signals, systems, and computers, pp 1398–1402

  3. 3.

    Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Xue W, Zhang L, Mou X, Bovik AC (2013) Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans Image Process 23(2):684–695

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Reisenhofer R, Bosse S, Kutyniok G, Wiegand T (2018) A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process Image Commun 61:33–43

    Google Scholar 

  6. 6.

    Saad MA, Bovik AC, Charrier C (2010) A DCT statistics-based blind image quality index. IEEE Signal Process Lett 17(6):583–586

    Google Scholar 

  7. 7.

    Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Xue W, Mou X, Zhang L, Bovik AC, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans Image Process 23(11):4850–4862

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Manap RA, Frangi AF, Shao L (2015) A non-parametric framework for no-reference image quality assessment. IEEE Global Conf Signal Inf Process (GlobalSIP) 2015:562–566

    Google Scholar 

  11. 11.

    Manap RA, Shao L, Frangi A (2017) PATCH-IQ: a patch based learning framework for blind image quality assessment. Inf Sci 2017:420

    Google Scholar 

  12. 12.

    Ye P, Kumar J, Kang L, Doermann D (2012) Unsupervised feature learning framework for no-reference image quality assessment. IEEE Conf Comput Vis Pattern Recogn 2012:1098–1105

    Google Scholar 

  13. 13.

    Xu J, Ye P, Li Q, Du H, Liu Y, Doermann D (2016) Blind image quality assessment based on high order statistics aggregation. IEEE Trans Image Process 25(9):4444–4457

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Bosse S, Maniry D, Muller KR, Wiegand T, Samek W (2017) Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans Image Process 27(1):206–219

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Zhang C, Xu J, Huang X, Park SH (2019) No-reference image quality assessment using independent component analysis and convolutional neural network. J Electr Eng Technol 14(1):487–496

    Google Scholar 

  16. 16.

    Wang H, Liu PX, Bao J, Xie X, Li S (2019) Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Trans Neural Netw Learn Syst 2019:1–12

    Google Scholar 

  17. 17.

    Wang H, Liu S, Yang X (2020) Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Inf Sci 514:605–616

    MathSciNet  Google Scholar 

  18. 18.

    Wang Y, Zhou W, Luo J, Yan H, Pu H, Peng Y (2019) Reliable intelligent path following control for a robotic airship against sensor faults. IEEE/ASME Trans Mechatron 24(6):2572–2582

    Google Scholar 

  19. 19.

    De I, Sil J (2015) No-reference image quality assessment using interval type 2 fuzzy sets. Appl Soft Comput 30:441–453

    Google Scholar 

  20. 20.

    De I, Sil J (2015) A fuzzy regression analysis based no reference image quality metric. Adv Intell Inf 2015:87–95

    Google Scholar 

  21. 21.

    Huo X, Ma L, Zhao X, Niu B, Zong G (2019) Observer-based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis. Inf Sci 490:369–386

    MathSciNet  Google Scholar 

  22. 22.

    Wang Y, Yang X, Yan H (2019) Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans Industr Electron 66(12):9439–9447

    Google Scholar 

  23. 23.

    Wang Y, Karimi HR, Lam H, Yan H (2019) Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links. IEEE Trans Cybern 2019:1–11

    Google Scholar 

  24. 24.

    Xue W, Zhang L, Mou X (2013) Learning without human scores for blind image quality assessment. IEEE Conf Comput Vis Pattern Recogn 2013:995–1002

    Google Scholar 

  25. 25.

    Mittal A, Soundararajan R, Bovik AC (2012) Making a ‘completely blind’ image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Google Scholar 

  26. 26.

    Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24(8):2579–2591

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Vu CT, Phan TD, Chandler DM (2011) S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans Image Process 21(3):934–945

    MATH  Google Scholar 

  28. 28.

    Bahrami K, Kot AC (2014) A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process Lett 21(6):751–755

    Google Scholar 

  29. 29.

    Hassen R, Wang Z, Salama MM (2013) Image sharpness assessment based on local phase coherence. IEEE Trans Image Process 22(7):2798–2810

    Google Scholar 

  30. 30.

    Li L, Lin W, Wang X, Yang G, Bahrami K, Kot AC (2015) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybern 46(1):39–50

    Google Scholar 

  31. 31.

    Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 22(12):5226–5237

    Google Scholar 

  32. 32.

    Pyatykh S, Hesser J (2012) Image noise level estimation by principal component analysis. IEEE Trans Image Process 22(2):687–699

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Chen G, Zhu F, Ann Heng P (2015) An efficient statistical method for image noise level estimation. Proc IEEE Int Conf Comput Vis 2015:477–485

    Google Scholar 

  34. 34.

    Liu X, Tanaka M, Okutomi M (2014) Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Trans Image Process 23(10):4361–4371

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Gabarda S, Cristobal G (2007) Blind image quality assessment through anisotropy. JOSA A 24(12):B42–B51

    Google Scholar 

  36. 36.

    Cohen E, Yitzhaky Y (2010) No-reference assessment of blur and noise impacts on image quality. SIViP 4(3):289–302

    Google Scholar 

  37. 37.

    Saha A, Wu QMJ (2015) Utilizing image scales towards totally training free blind image quality assessment. IEEE Trans Image Process 24(6):1879–1892

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Joshi P, Prakash S (2017) Retina inspired no-reference image quality assessment for blur and noise. Multimedia Tools Appl 76(18):18871–18890

    Google Scholar 

  39. 39.

    Joshi P, Prakash S (2018) Continuous wavelet transform based no-reference image quality assessment for blur and noise distortions. IEEE Access 6:33871–33882

    Google Scholar 

  40. 40.

    Zhu X, Milanfar P (2009) A no-reference sharpness metric sensitive to blur and noise. In: 2009 international workshop on quality of multimedia experience, pp 64–69

  41. 41.

    Zhu X, Milanfar P (2010) Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans Image Process 19(12):3116–3132

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Zhang H, Yuan B, Dong B, Jiang Z (2018) No-reference blurred image quality assessment by structural similarity index. Appl Sci 8(10):2003

    Google Scholar 

  43. 43.

    Crete F, Dolmiere T, Ladret P, Nicolas M (2007) The blur effect: perception and estimation with a new no-reference perceptual blur metric. Hum Vis Electronic Imaging 2:196–206

    Google Scholar 

  44. 44.

    Sheikh HR, Wang Z, Cormack L, Bovik AC (2019) LIVE image quality assessment database release 2. https://live.ece.utexas.edu/research/quality

  45. 45.

    Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):1–21

    Google Scholar 

  46. 46.

    Le Callet P, Autrusseau F (2005) Subjective quality assessment IRCCyN/IVC database. https://www.irccyn.ec-nantes.fr/ivcdb/

  47. 47.

    Jayaraman D, Mittal A, Moorthy AK, Bovik AC (2012) Objective quality assessment of multiply distorted images. In: 2012 Conference record of the forty sixth asilomar conference on signals, systems and computers (ASILOMAR), pp 1693–1697

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to So-Yeong Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, SY., Kim, D. Structural Toughness Under Noise: An Efficient No-Reference Image Distortion Assessment for Blur and Noise. J. Electr. Eng. Technol. 15, 1775–1788 (2020). https://doi.org/10.1007/s42835-020-00431-8

Download citation

Keywords

  • No-reference image distortion assessment
  • Multiple distortions
  • Blur
  • Noise
  • Structural similarity