Contribution of bacterivorous nematodes to soil resistance and resilience under copper or heat stress

Abstract

The functional performance of soil ecosystems following disturbance determines ecosystem stability, and although contributions of bacterivorous nematodes to soil ecosystems are recognized, their roles in functional stability have received little attention. The objective of this study was to evaluate the roles of bacterivorous nematodes in functional stability following stress. In a factorial laboratory experiment, soil microcosms were prepared with two levels of nematode abundance, either an enriched abundance of bacterivores (Nema soil) or background abundance of nematodes (CK soil), and three levels of stress, copper, heat, or an unstressed control. The resistance and resilience of nematode abundance, as well as soil microbial function by determining decomposition of plant residues and microbial substrate utilization pattern using a BIOLOG microplate, were followed post stress. The relative changes of two dominant bacterivores, Acrobeloides and Protorhabditis, responded differently to stresses. The resistance and resilience of Protorhabditis were greater than that of Acrobeloides to copper stress during the whole incubation period, while both bacterivores only showed higher resilience under heat stress at the end of incubation. The enrichment of bacterivores had no significant effects on the soil microbial resistance but significantly increased its resilience to copper stress. Under heat stress, the positive effect of bacterivores on soil resilience was only evident from 28 days to the end of incubation. The differences in the responses of soil function to stress with or without bacterivores suggested that soil nematodes could be conducive to ecosystem stability, highlighting the soil fauna should be taken into account in soil sustainable management.

References

  1. Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511.

    CAS  Google Scholar 

  2. Beare, M.H., Reddy, M.V., Tian, G., Srivastava, S.C., 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of decomposer biota. Applied Soil Ecology 6, 87–108.

    Google Scholar 

  3. Bongers, T., Bongers, M., 1998. Functional diversity of nematodes. Applied Soil Ecology 10, 239–251.

    Google Scholar 

  4. Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224–228.

    CAS  Google Scholar 

  5. Bonkowski, M., Cheng, W., Griffiths, B.S., Alphei, J., Scheu, S., Cheng, W.X., 2000. Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology 36, 135–147.

    Google Scholar 

  6. Brussaard, L., de Ruiter, P.C., Brown, G.G., 2007. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment 121, 233–244.

    Google Scholar 

  7. Chen, X., Liu, M., Hu, F., Mao, X., Li, H., 2007. Contributions of soil microfauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecologica Sinica 27, 3132–3143.

    CAS  Google Scholar 

  8. Coleman, D.C., Crossley, D.A. Jr, Hendrix, P.F., 2004. Fundamentals of Soil Ecology, 2nd ed. Elsevier Academic Press, San Diego, CA.

    Google Scholar 

  9. Cortois, R., Veen, G.F., Duyts, H., Abbas, M., Strecker, T., Kostenko, O., Eisenhauer, N., Scheu, S., Gleixner, G., De Deyn, G.B., van der Putten, W.H., 2017. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 8, 1–14.

    Google Scholar 

  10. Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Romer, A., Terrail, R., Vellend, M., Boucher, Y., Laflamme, J., Bergeron, Y., Arseneault, D., 2019. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nature Communications 10, 1265.

    Google Scholar 

  11. de Vries, F.T., Liiri, M.E., Bjørnlund, L., Bowker, M.A., Christensen, S., Setälä, H.M., Bardgett, R.D., 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change 2, 276–280.

    Google Scholar 

  12. Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh, B.K., Maestre, F.T., 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters 20, 1295–1305.

    Google Scholar 

  13. Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J. Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C. A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution 4, 210–220.

    Google Scholar 

  14. Doran, J.W., Zeiss, M.R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15, 3–11.

    Google Scholar 

  15. Dussault, M., Bécaert, V., Francois, M., Sauvé, S., Deschênes, L., 2008. Effect of copper on soil functional stability measured by relative soil stability index (RSSI) based on two enzyme activities. Chemosphere 72, 755–762.

    CAS  Google Scholar 

  16. Ekschmitt, K., Korthals, G.W., 2006. Nematodes as sentinels of heavy metals and organic toxicants in the soil. Journal of Nematology 38, 13–19.

    CAS  Google Scholar 

  17. Ferris, H., Bongers, T., 2006. Nematode indicators of organic enrichment. Journal of Nematology 38, 3–12.

    Google Scholar 

  18. Fiscus, D.A., Neher, D.A., 2002. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications 12, 565–575.

    Google Scholar 

  19. Geisen, S., Wall, D.H., van der Putten, W.H., 2019. Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology 29, R1036–R1044.

    CAS  Google Scholar 

  20. Girvan, M.S., Campbell, C.D., Killham, K., Prosser, J.I., Glover, L.A., 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology 7, 301–313.

    CAS  Google Scholar 

  21. Griffiths, B.S., Bonkowski, M., Dobson, G., Caul, S., 1999. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43, 297–304.

    CAS  Google Scholar 

  22. Griffiths, B.S., Bonkowski, M., Roy, J., Ritz, K., 2001. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology 16, 49–61.

    Google Scholar 

  23. Griffiths, B.S., Philippot, L., 2013. Insights into the resistance and resilience of the soil microbial Community. FEMS Microbiology Reviews 37, 112–129.

    CAS  Google Scholar 

  24. Griffiths, B.S., Ritz, K., Bardgett, R.D., Cook, R., Christensen, S., Ekelund, F., Sørensen, S., Bååth, E., Bloem, J., de Ruiter, P.C., Dolfing, J., Nicolardot, B., 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity ecosystem function relationship. Oikos 90, 279–294.

    Google Scholar 

  25. Hewitt, J., Thrush, S., Lohrer, A., Townsend, M., 2010. A latent threat to biodiversity: consequences of small-scale heterogeneity loss. Biodiversity and Conservation 19, 1315–1323.

    Google Scholar 

  26. Ingham, R.E., Trofymow, J.A., Ingham, E.R., Coleman, D.C., 1985. Interactions of bacteria, fungi, and their nematode grazers- effects on nutrient cycling and plant-growth. Ecological Monographs 55, 119–140.

    Google Scholar 

  27. Jones, D., Candido, E.P.M., 1999. Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: Relationship to the cellular stress response. Journal of Experimental Zoology 284, 147–157.

    CAS  Google Scholar 

  28. Kardol, P., Throop, H.L., Adkins, J., de Graaff, M.A., 2016. A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biology & Biochemistry 102, 33–36.

    CAS  Google Scholar 

  29. Korthals, G.W., van de Ende, A., van Megen, H., Lexmond, T.M., Kammenga, J.E., Bongers, T., 1996. Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups. Applied Soil Ecology 4, 107–117.

    Google Scholar 

  30. Kuan, H.L., Fenwick, C., Glover, L.A., Griffiths, B.S., Ritz, K., 2006. Functional resilience of microbial communities from perturbed upland grassland soils to further persistent or transient stresses. Soil Biology & Biochemistry 38, 2300–2306.

    CAS  Google Scholar 

  31. Li, J., Peng, P., Zhao, J., 2020. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters 2, 33–39.

    Google Scholar 

  32. Li, Q., Jiang, Y., Liang, W.J., 2006. Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. Journal of Environmental Sciences (China) 18, 323–328.

    CAS  Google Scholar 

  33. Liu, M., Chen, X., Griffiths, B.S., Huang, Q., Li, H., Hu, F., 2012. Dynamics of nematode assemblages and soil function in adjacent restored and degraded soils following disturbance. European Journal of Soil Biology 49, 37–16.

    Google Scholar 

  34. Liu, M., Chen, X., Qin, J., Wang, D., Griffiths, B., Hu, F., 2008. A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology 40, 250–259.

    Google Scholar 

  35. Mao, X.F., Hu, F., Griffiths, B.S., Li, H.X., 2006. Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biology & Biochemistry 38, 1615–1622.

    CAS  Google Scholar 

  36. Neher, D.A., 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48, 371–394.

    CAS  Google Scholar 

  37. Nielsen, U.N., Wall, D.H., Six, J., 2015. Soil biodiversity and the environment. Annual Review of Environment and Resources 40, 63–90.

    Google Scholar 

  38. Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., 2016. Global Soil Biodiversity Atlas. European Commission. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  39. Orwin, K.H., Wardle, D.A., 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology & Biochemistry 36, 1907–1912.

    CAS  Google Scholar 

  40. Pothula, S.K., Grewal, P.S., Auge, R.M., Saxton, A.M., Bernard, E.C., 2019. Agricultural intensification and urbanization negatively impact soil nematode richness and abundance: a meta-analysis. Journal of Nematology 51, 1–17

    Google Scholar 

  41. Rein, I.V., Gessler, A., Katrin, P., Claudia, K., Andreas, U., Kayler, Z. E., 2016. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Global Change Biology 22, 2861–2874.

    Google Scholar 

  42. Schratzberger, M., Holterman, M., van Oevelen, D., Helder, J., 2019. A worm’s world: Ecological flexibility pays off for free-living nematodes in sediments and soils. Bioscience 69, 867–876.

    Google Scholar 

  43. Schwarz, B., Barnes, A.D., Thakur, M.P., Brose, U., Ciobanu, M., Reich, P.B., Rich, R.L., Rosenbaum, B., Stefanski, A., Eisenhauer, N., 2017. Warming alters the energetic structure and function but not resilience of soil food webs. Nature Climate Change 7, 895–900.

    Google Scholar 

  44. Sturhan, D., 1986. Influence of heavy metals and other elements on soil nematodes. Revue de Nématologie 9, 311.

    Google Scholar 

  45. Thakur, M.P., Geisen, S., 2019. Trophic regulations of the soil microbiome. Trends in Microbiology 27, 771–780.

    CAS  Google Scholar 

  46. Thakur, M.P., Tilman, D., Purschke, O., Ciobanu, M., Cowles, J., Isbell, F., Wragg, P.D., Eisenhauer, N., 2017. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Science Advances 3, e1700866.

    Google Scholar 

  47. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677.

    CAS  Google Scholar 

  48. Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil 398, 1–24.

    CAS  Google Scholar 

  49. Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America 111, 5266–5270.

    CAS  Google Scholar 

  50. Yang, G., Wagg, C., Veresoglou, S.D., Hempel, S., Rillig, M.C., 2018. How soil biota drive ecosystem stability. Trends in Plant Science 23, 1057–1067.

    CAS  Google Scholar 

  51. Yeates, G., 2007. Abundance, diversity, and resilience of nematode assemblages in forest soils. Canadian Journal of Forest Research 37, 216–225.

    Google Scholar 

  52. Yeates, G.W., 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils 37, 199–210.

    Google Scholar 

  53. Zhang, X.K., Li, Q., Zhu, A.N., Liang, W.J., Zhang, J.B., Steinberger, Y., 2012. Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators 13, 75–81.

    Google Scholar 

  54. Zhao, J., Neher, D.A., 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology 64, 135–141.

    Google Scholar 

  55. Zhu, B., Xue, J., Xia, R., Jin, M., Wu, Y., Tian, S., Chen, X., Liu, M., Hu, F., 2019. Effect of soil nematode functional guilds on plant growth and aboveground herbivores. Shengwu Duoyangxing 27, 409–418.

    Google Scholar 

  56. Zhu, T., Yang, C., Wang, J., Zeng, S., Liu, M., Yang, J., Bai, B., Cao, J., Chen, X., Müller, C., 2018. Bacterivore nematodes stimulate soil gross N transformation rates depending on their species. Biology and Fertility of Soils 54, 107–118.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Foundation of Sciences in China (No. 41877056) and China Agriculture Research System-Green Manure (No. CARS-22-G-10).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manqiang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xue, W., Xue, J. et al. Contribution of bacterivorous nematodes to soil resistance and resilience under copper or heat stress. Soil Ecol. Lett. (2020). https://doi.org/10.1007/s42832-020-0045-3

Download citation

Keywords

  • Stress
  • Soil resistant
  • Soil resilience
  • Bacterivores
  • Functional stability