Applications of physical methods in estimation of soil biota and soil organic matter

Abstract

Soil biota is the living component of soil organic matter (SOM), and plays a key role in the decomposition of SOM. Both soil biota and SOM are indicators of soil fertility and soil quality. However, they both are sensitive to soil disturbance. Although researchers developed various technologies to detect soil biota and SOM, they are mostly destructive and cause disturbance to soil, which may not reflect the actual situation of soil biota and SOM. Therefore, here we mostly focused on the non-destructive physical methods for estimating soil biota and SOM and discussed their advantages and disadvantages. These methods include but not limited to acoustic detection, radio frequency identification, radioactive tagging, hyperspectral sensing and electron energy loss spectroscopy. In addition, we pointed out the current research problems and the potential research directions for applications of physical methods in estimation of soil biota and SOM.

References

  1. Barthès, B.G., Brunet, D., Rabary, B., Ba, O., Villenave, C., 2011. Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community. Soil Biology & Biochemistry 43, 1649–1659.

    Google Scholar 

  2. Bastardie, F., Capowiez, Y., Cluzeau, D., 2003. Burrowing behaviour of radio-labelled earthworms revealed by analysis of 3D-trajectories in artificial soil cores. Pedobiologia 47, 554–559.

    Google Scholar 

  3. Bauer-Reich, C., Tan, K.C., Haring, F., Schneck, N., Wick, A., Berge, L., Hoey, J., Sailer, R., Ulven, Ch., 2014. An investigation of the viability of UHF RFID for subsurface soil sensors. In: 2014 IEEE International Conference on Electro/Information Technology (EIT) IEEE, 577–580.

  4. Birch, M.E., Bon, K.K., Evans, D., Ruda-Eberenz, T.A., 2011. Exposure and emissions monitoring during carbon nanofiber production-Part I: Elemental carbon and iron-soot aerosols. Annals of Occupational Hygiene 55, 1016–1036.

    CAS  Google Scholar 

  5. Bodner, G., Nakhforoosh, A., Arnold, T., Leitner, D., 2018. Hyper-spectral imaging: a novel approach for plant root phenotyping. Plant Methods 14, 84.

    Google Scholar 

  6. Bongers, T.H., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224–228.

    CAS  Google Scholar 

  7. Brandhorst-Hubbard, J.L., Flanders, K.L., Mankin, R.W., Guertal, E. A., Crocker, R.L., 2001. Mapping of soil insect infestations sampled by excavation and acoustic methods. Journal of Economic Entomology 94, 1452–1458.

    CAS  Google Scholar 

  8. Briedis, C., João, C.S., Fávero, C., Navarro, J.D.F., Inagaki, Th., Boer, A., Neto, C.Q., Ferreira, A.D.O., Canalli, L.B., Santos, J., 2012. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80–88.

    CAS  Google Scholar 

  9. Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., Zech, W., 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116–129.

    CAS  Google Scholar 

  10. Chen, J., Ferris, H., Scow, K., Graham, K., 2001. Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 130, 135–144.

    CAS  Google Scholar 

  11. Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H., 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37, 1477–1488.

    CAS  Google Scholar 

  12. Civiš, S., Knížek, A., Rimmer, P.B., Ferus, M., Kubelík, P., Zukalova, M., Kavan, L., Chatzitheodoridis, E., 2018. Formation of Methane and (Per)Chlorates on Mars. ACS Earth and Space Chemistry.

  13. Coleman, D.C., Callaham, M.A., Crossley, D.A., 2016. Fundamentals of Soil Ecology. 3rd ed. Cambridge: Academic Press.

    Google Scholar 

  14. Foster, R.C., Rovira, A.D., 1976. Ultrastructure of wheat rhizosphere. New Phytologist 76, 343–352.

    Google Scholar 

  15. Garvie, L.A.J., Buseck, P.R., 2006. Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite. Meteoritics & Planetary Science 41, 633–642.

    CAS  Google Scholar 

  16. Haff, R.P., Saranwong, S., Thanapase, W., Janhiran, A., Kasemsumran, S., Kawano, S., 2013. Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes. Postharvest Biology and Technology 86, 23–28.

    Google Scholar 

  17. Harrison, R.D., Gardner, W.A., Tollner, W.E., Kinard, D.J., 1993. X-ray computed tomography studies of the burrowing behavior of fourthinstar pecan weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 86, 1714–1719.

    Google Scholar 

  18. Hedde, M., Bureau, F., Delporte, P., Cécillon, L., Decaëns, T., 2013. The effects of earthworm species on soil behaviour depend on land use. Soil Biology & Biochemistry 65, 264–273.

    CAS  Google Scholar 

  19. Hodkinson, I.D., Jackson, J.K., 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management 35, 649–666.

    Google Scholar 

  20. James, N., 1958. Soil extract in soil microbiology. Canadian Journal of Microbiology 4, 363–370.

    CAS  Google Scholar 

  21. Jouquet, P., Capowiez, Y., Bottinelli, N., Traoré, S., 2014. Potential of Near Infrared Reflectance Spectroscopy (NIRS) for identifying termite species. European Journal of Soil Biology 60, 49–52.

    CAS  Google Scholar 

  22. Joyner, J., Harmon, P., 1961. Burrows and oscillative behavior therein of Lumbricus terrestris. s terrestris. Indiana Academy of Science 71, 378–384.

    Google Scholar 

  23. Jung, A.V., Chanudet, V., Ghanbaja, J., Lartiges, B.S., Bersillon, J.L., 2005. Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation. Water Research 39, 3849–3862.

    CAS  Google Scholar 

  24. Kenig, F., Simons, D.J.H., Crich, D., Cowen, J.P., Ventura, G., Rehbein-Khalily, T., Brown, T.C., Anderson, K., 2003. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proceedings of the National Academy of Sciences of the United States of America 100, 12554–12558.

    CAS  Google Scholar 

  25. Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V., 2007. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment 106, 305–325.

    Google Scholar 

  26. Lahaye, R., Bank, M., Bogarín, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T., Savolainen, V., 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105, 2923–2928.

    CAS  Google Scholar 

  27. Lawrence, A.P., Bowers, M.A., 2002. A test of the “hot” mustard extraction method of sampling earthworms. Soil Biology & Biochemistry 34, 549–552.

    CAS  Google Scholar 

  28. Lehmann, J., Kinyangi, J., Solomon, D., 2007. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85, 45–57.

    Google Scholar 

  29. Li, Z., Guo, X., 2018. Non-photosynthetic vegetation biomass estimation in semiarid canadian mixed grasslands using ground hyperspectral data, Landsat 8 OLI, and Sentinel-2 images. International Journal of Remote Sensing 39, 1–21.

    Google Scholar 

  30. Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J., Skjemstad, J. O., Luizão, F., Engelhard, M., Neves, E., Wirick, S., 2008. Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta 72, 6069–6078.

    CAS  Google Scholar 

  31. Lins, U., Barros, C.F., da Cunha, M., Miguens, F.C., 2002. Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma 220, 89–96.

    CAS  Google Scholar 

  32. Mankin, R.W., Brandhorst-Hubbard, J.L., Flanders, K.L., Zhang, M., Crocker, R.L., Lapointe, S.L., McCoy, C.W., Fisher, J.R., Weaver, D.K., 2000. Eavesdropping on insects hidden in soil and interior structures of plants. Journal of Economic Entomology 93, 1173–1182.

    CAS  Google Scholar 

  33. Mankin, R.W., Crocker, R.L., Flanders, K.L., Shapiro, J.P., 1998. Acoustic detection and identification of insects in soil. In: Kuhl, P. K., Crum, L.A. (eds.), Proceedings of the 16th International Congress of Acoustics and the 135th Annual Meeting of the Acoustical Society of America, 685–686.

  34. Mankin, R.W., Sun, J.S., Shuman, D., Weaver, D.K., 1997. Shielding against noise interfering with quantitation of insect infestations by acoustic detection systems in grain elevators. Applied Acoustics 50, 309–323.

    Google Scholar 

  35. Narvankar, D.S., Singh, C.B., Jayas, D.S., White, N.D.G., 2009. Assessment of soft X-ray imaging for detection of fungal infection in wheat. Biosystems Engineering 103, 49–56.

    Google Scholar 

  36. Njoroge, A.W., Mankin, R.W., Smith, B.W., Baributsa, D., 2017. Effects of hermetic storage on adult Sitophilus oryzae L. (coleoptera: Curculionidae) acoustic activity patterns and mortality. Journal of Economic Entomology 110, 2707–2715.

    CAS  Google Scholar 

  37. Njoroge, A.W., Mankin, R.W., Smith, B.W., Baributsa, D., 2018. Oxygen consumption and acoustic activity of adult Callosobruchus maculatus (F.) (coleoptera: Chrysomelidae: Bruchinae) during hermetic storage. Insects 9, 45.

    Google Scholar 

  38. Raw, F., 1959. Estimating earthworm populations by using formalin. Nature 184, 1661–1662.

    Google Scholar 

  39. Raw, F., 1960. Earthworm population studies: a comparison of sampling methods. Nature 187, 257–257.

    Google Scholar 

  40. Scheibler, E., Roschlau, C., Brodbeck, D., 2014. Lunar and temperature effects on activity of free-living desert hamsters (Phodopus roborovskii, Satunin 1903). International Journal of Biometeorology 58, 1769–1778.

    Google Scholar 

  41. Schmidt, O., 2001a. Time-limited soil sorting for long-term monitoring of earthworm populations. Pedobiologia 45, 69–83.

    Google Scholar 

  42. Schmidt, O., 2001b. Appraisal of the electrical octet method for estimating earthworm populations in arable land. Annals of Applied Biology 138, 231–241.

    Google Scholar 

  43. Singh, C., Jayas, D., Paliwal, J., White, N., 2010. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Computers and Electronics in Agriculture 73, 118–125.

    Google Scholar 

  44. Skinner, F.A., Jones, P.C.T., Mollison, J.E., 1952. A Comparison of a direct- and a plate-counting technique for the quantitative estimation of soil micro-organisms. Journal of General Microbiology 6, 261–271.

    CAS  Google Scholar 

  45. Sogin, M., Morrison, H., Huber, J., Welch, D., Huse, S., Neal, P., Arrieta, J., Herndl, G., 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America 103, 12115–12120.

    CAS  Google Scholar 

  46. Taylor, J., 1962. The estimation of numbers of bacteria by tenfold dilution series. Journal of Applied Bacteriology 25, 54–61.

    Google Scholar 

  47. Tisdall, J.M., McKenzie, B.M., 1999. A method of extracting earthworms from cores of soil with minimum damage to the soil. Biology and Fertility of Soils 30, 96–99.

    Google Scholar 

  48. Wang, X., Zhang, F., Kung, H., Johnson, V., 2018. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sensing of Environment 218, 104–118.

    Google Scholar 

  49. Wetterlind, J., Stenberg, B., Söderström, M., 2010. Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models. Geoderma 156, 152–160.

    CAS  Google Scholar 

  50. Wheater, C.P., Bell, J.R., Cook P.A., 2011. Practical Field Ecology: A Project Guide. Wiley-Blackwell, 109.

  51. Zhu, G., Petersen, M.J., Liu, G., Peck, D.C., 2013. Imidacloprid as a contact arrestant for larvae of the european chafer, amphimallon majale. Pest Management Science 69, 483–492.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shenglei Fu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sergei, C., Fu, S. Applications of physical methods in estimation of soil biota and soil organic matter. Soil Ecol. Lett. (2020). https://doi.org/10.1007/s42832-020-0038-2

Download citation

Keywords

  • Soil organic matter
  • Soil biota
  • Advanced method
  • Acoustic method
  • Spectroscopy
  • Tagging