Crumpled and porous graphene for supercapacitor applications: a short review

Abstract

Research on Graphene and its importance in the field of energy conversion and storage devices such as fuel cells, batteries, supercapacitors and solar cells has gained momentum recently. It is studied to be the most suitable electrode material for enhanced performance of supercapacitors in terms of charge–discharge cycles, specific capacitance, high power and energy densities and so on, specifically due to its high conductivity and large theoretical surface area. Unfortunately, it posits lot of challenges due to its irreversible stacking between the individual sheets resulting in the decrease in the Specific Surface Area (SSA) compared to the theoretically reported values. Numerous studies have been carried out to prevent this stacking in order to increase the surface area, thereby being a more suitable material for the manufacture of electrodes for supercapacitors as its capacitance greatly depends on the electrode material. To solve this problem, the conversion of two-dimensional graphene sheets to three-dimensional crumpled graphene structure has been verified to be the most effective approach. The study of crumpled graphene has been one of the recent trends in the field of energy storage applications in consumer electronics and hybrid vehicles as the process of crumpling can be controlled to suit the prospective device applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright IOP Publishing Ltd and SISSA Medialab srl. Reproduced by permission of IOP Publishing. All rights reserved, (b) Wrinkles [24] and (c) Crumpled graphene. c is reprinted with permission from [23]. Copyright 2011 American Physical Society

Fig. 5

Copyright 2011 American Chemical Society

Fig. 6

Copyright 2011 American Chemical Society

Fig. 7

Copyright 2016 Elseiver

Fig. 8

Copyright 2012 American Chemical Society

Fig. 9

Copyright 2013 American Chemical Society

Fig. 10

Copyright 2014 Springer Nature

Fig. 11
Fig. 12
Fig. 13
Fig. 14

Copyright 2016 Elseiver

Fig. 15

Copyright 2018 Elseiver

Fig. 16
Fig. 17

Copyright 2020 Elseiver

Fig. 18
Fig. 19
Fig. 20

Copyright 2011 American Chemical Society

Fig. 21

Copyright 2013 American Chemical Society

Fig. 22

Copyright 2012 American Chemical Society

References

  1. 1.

    Geim AK, Novoselov KS (2010) The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals. https://doi.org/10.1038/nmat1849

  2. 2.

    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

    CAS  Article  Google Scholar 

  3. 3.

    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308. https://doi.org/10.1126/science.1156965

    CAS  Article  Google Scholar 

  4. 4.

    Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602. https://doi.org/10.1103/PhysRevLett.100.016602

    CAS  Article  Google Scholar 

  5. 5.

    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. https://doi.org/10.1021/nl802558y

    CAS  Article  Google Scholar 

  6. 6.

    Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259. https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  7. 7.

    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    CAS  Article  Google Scholar 

  8. 8.

    Geim AK (2011) Nobel lecture: random walk to graphene. Rev Mod Phys 83(3):851. https://doi.org/10.1103/RevModPhys.83.851

    CAS  Article  Google Scholar 

  9. 9.

    Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51. https://doi.org/10.1039/C2NR32629A

    CAS  Article  Google Scholar 

  10. 10.

    Shams SS, Zhang R, Zhu J (2015) Graphene synthesis: a Review. Mater Sci-Poland 33(3):566–578. https://doi.org/10.1515/msp-2015-0079

    CAS  Article  Google Scholar 

  11. 11.

    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    CAS  Article  Google Scholar 

  12. 12.

    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482. https://doi.org/10.1021/jp9731821

    CAS  Article  Google Scholar 

  13. 13.

    Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503. https://doi.org/10.1021/nl072090c

    CAS  Article  Google Scholar 

  14. 14.

    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    CAS  Article  Google Scholar 

  15. 15.

    Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5(1):26–41. https://doi.org/10.1021/nn102598m

    CAS  Article  Google Scholar 

  16. 16.

    Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12(8):3925–3930. https://doi.org/10.1021/nl300901a

    CAS  Article  Google Scholar 

  17. 17.

    Mohan AN, Manoj B, Ramya AV (2016) Probing the nature of defects of graphene like nano-carbon from amorphous materials by Raman spectroscopy. Asian J Chem 28(7):1501. https://doi.org/10.14233/ajchem.2016.19739

    CAS  Article  Google Scholar 

  18. 18.

    Manoj B, Raj AM, Chirayil GT (2017) Tunable direct band gap photoluminescent organic semiconducting nanoparticles from lignite. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-18338-2

    CAS  Article  Google Scholar 

  19. 19.

    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63. https://doi.org/10.1038/nature05545

    CAS  Article  Google Scholar 

  20. 20.

    Bai KK, Zhou Y, Zheng H, Meng L, Peng H, Liu Z et al (2014) Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. Phys Rev Lett 113(8):086102. https://doi.org/10.1103/PhysRevLett.113.086102

    CAS  Article  Google Scholar 

  21. 21.

    Guinea F, Horovitz B, Le Doussal P (2009) Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun 149(27–28):1140–1143. https://doi.org/10.1016/j.ssc.2009.02.044

    CAS  Article  Google Scholar 

  22. 22.

    Ramya AV, Mohan AN, Manoj B (2016) Wrinkled graphene: synthesis and characterization of few layer graphene-like nanocarbons from kerosene. Mater Sci-Poland 34(2):330–336. https://doi.org/10.1515/msp-2016-0061

    CAS  Article  Google Scholar 

  23. 23.

    Cranford SW, Buehler MJ (2011) Packing efficiency and accessible surface area of crumpled graphene. Phys Rev B 84(20):205451. https://doi.org/10.1103/PhysRevB.84.205451

    CAS  Article  Google Scholar 

  24. 24.

    Wang C, Liu Y, Lan L, Tan H (2013) Graphene wrinkling: formation, evolution and collapse. Nanoscale 5(10):4454–4461. https://doi.org/10.1039/C3NR00462G

    CAS  Article  Google Scholar 

  25. 25.

    Deng S, Berry V (2016) Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 19(4):197–212. https://doi.org/10.1016/j.mattod.2015.10.002

    CAS  Article  Google Scholar 

  26. 26.

    Saha VC, Sabuj MMA, Shams P, Rahman S, Qadir MR, Islam MR, Gulshan F (2018) Synthesis and characterization of reduced graphene oxide reinforced polymer matrix composite. MS&E 438(1):012008. https://doi.org/10.1088/1757-899X/438/1/012008

    Article  Google Scholar 

  27. 27.

    Bonilla LL, Carpio A (2012) Ripples in a graphene membrane coupled to Glauber spins. J Stat Mech: Theory Exp 2012(09):P09015. https://doi.org/10.1088/1742-5468/2012/09/P09015

    CAS  Article  Google Scholar 

  28. 28.

    Wang CG, Lan L, Liu YP, Tan HF (2013) Defect-guided wrinkling in graphene. Comput Mater Sci 77:250–253. https://doi.org/10.1016/j.commatsci.2013.04.051

    CAS  Article  Google Scholar 

  29. 29.

    Ramya AV, Manoj B, Mohan AN (2016) Extraction and characterization of wrinkled graphene nanolayers from commercial graphite. Asian J Chem 28(5):1031

    CAS  Article  Google Scholar 

  30. 30.

    Liu L, Xiao W, Wang D, Yang K, Tao L, Gao HJ (2016) Edge states of graphene wrinkles in single-layer graphene grown on Ni (111). Appl Phys Lett 109(14):143103. https://doi.org/10.1063/1.4963858

    CAS  Article  Google Scholar 

  31. 31.

    Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98(1):013113. https://doi.org/10.1063/1.3534787

    CAS  Article  Google Scholar 

  32. 32.

    Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861. https://doi.org/10.1038/nmat2011

    CAS  Article  Google Scholar 

  33. 33.

    Capasso A, Placidi E, Zhan HF, Perfetto E, Bell JM, Gu Y, Motta N (2014) Graphene ripples generated by grain boundaries in highly ordered pyrolytic graphite. Carbon 68:330–336. https://doi.org/10.1016/j.carbon.2013.11.009

    CAS  Article  Google Scholar 

  34. 34.

    Baimova JA, Liu B, Dmitriev SV, Zhou K (2015) Mechanical properties of crumpled graphene under hydrostatic and uniaxial compression. J Phys D Appl Phys 48(9):095302. https://doi.org/10.1088/0022-3727/48/9/095302

    CAS  Article  Google Scholar 

  35. 35.

    Isacsson A, Jonsson LM, Kinaret JM, Jonson M (2008) Electronic superlattices in corrugated graphene. Phys Rev B 77(3):035423. https://doi.org/10.1103/PhysRevB.77.035423

    CAS  Article  Google Scholar 

  36. 36.

    Shen X, Lin X, Yousefi N, Jia J, Kim JK (2014) Wrinkling in graphene sheets and graphene oxide papers. Carbon 66:84–92. https://doi.org/10.1016/j.carbon.2013.08.046

    CAS  Article  Google Scholar 

  37. 37.

    Choudhary S, Mungse HP, Khatri OP (2013) Hydrothermal deoxygenation of graphene oxide: chemical and structural evolution. Chem Asian J 8(9):2070–2078. https://doi.org/10.1002/asia.201300553

    CAS  Article  Google Scholar 

  38. 38.

    Luo J, Jang HD, Sun T, Xiao L, He Z, Katsoulidis AP et al (2011) Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5(11):8943–8949. https://doi.org/10.1021/nn203115u

    CAS  Article  Google Scholar 

  39. 39.

    Ma X, Zachariah MR, Zangmeister CD (2012) Crumpled nanopaper from graphene oxide. Nano Lett 12(1):486–489. https://doi.org/10.1021/nl203964z

    CAS  Article  Google Scholar 

  40. 40.

    Guo F, Creighton M, Chen Y, Hurt R, Külaots I (2014) Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 66:476–484. https://doi.org/10.1016/j.carbon.2013.09.024

    CAS  Article  Google Scholar 

  41. 41.

    Jo EH, Choi JH, Park SR, Lee CM, Chang H, Jang HD (2016) Size and structural effect of crumpled graphene balls on the electrochemical properties for supercapacitor application. Electrochim Acta 222:58–63. https://doi.org/10.1016/j.electacta.2016.11.016

    CAS  Article  Google Scholar 

  42. 42.

    Tang Z, Li X, Sun T, Shen S, Huixin X, Yang J (2018) Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mater 272:40–43. https://doi.org/10.1016/j.micromeso.2018.06.020

    CAS  Article  Google Scholar 

  43. 43.

    Wang WN, Jiang Y, Biswas P (2012) Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J Phys Chem Lett 3(21):3228–3233. https://doi.org/10.1021/jz3015869

    CAS  Article  Google Scholar 

  44. 44.

    Parviz D, Metzler SD, Das S, Irin F, Green MJ (2015) Tailored crumpling and unfolding of spray-dried pristine graphene and graphene oxide sheets. Small 11(22):2661–2668. https://doi.org/10.1002/smll.201403466

    CAS  Article  Google Scholar 

  45. 45.

    Semat JM, Rashmi W, Mahesh V, Khalid M, Priyanka J (2019) Synthesis of crumpled graphene by fast cooling method. In AIP Conference Proceedings (Vol. 2137, No. 1, p. 020014). AIP Publishing LLC. https://doi.org/10.1063/1.5120990

  46. 46.

    Yan J, Xiao Y, Ning G, Wei T, Fan Z (2013) Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors. RSC Adv 3(8):2566–2571. https://doi.org/10.1039/C2RA22685E

    CAS  Article  Google Scholar 

  47. 47.

    Yun YS, Park YU, Chang SJ, Kim BH, Choi J, Wang J et al (2016) Crumpled graphene paper for high power sodium battery anode. Carbon 99:658–664. https://doi.org/10.1016/j.carbon.2015.12.047

    CAS  Article  Google Scholar 

  48. 48.

    Zhang Z, Ma M, Chen C, Cai Z, Huang X (2016) The morphology, structure and electrocatalytic ability of graphene prepared with different drying methods. RSC Adv 6(33):28005–28014. https://doi.org/10.1039/C5RA23123J

    CAS  Article  Google Scholar 

  49. 49.

    Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler MJ, Zhao X (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12(4):321–325. https://doi.org/10.1038/nmat3542

    CAS  Article  Google Scholar 

  50. 50.

    Zang J, Cao C, Feng Y, Liu J, Zhao X (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4(1):1–7. https://doi.org/10.1038/srep06492

    CAS  Article  Google Scholar 

  51. 51.

    Liu YZ, Chen CM, Li YF, Li XM, Kong QQ, Wang MZ (2014) Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage. J Mater Chem A 2(16):5730–5737. https://doi.org/10.1039/C3TA15082H

    CAS  Article  Google Scholar 

  52. 52.

    Kang J, Lim T, Jeong MH, Suk JW (2019) Graphene papers with tailored pore structures fabricated from crumpled graphene spheres. Nanomaterials 9(6):815. https://doi.org/10.3390/nano9060815

    CAS  Article  Google Scholar 

  53. 53.

    Wang D, Li F, Liu M, Lu GQ, Cheng H (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. 373–376

  54. 54.

    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763. https://doi.org/10.1126/science.1132195

    CAS  Article  Google Scholar 

  55. 55.

    Li J, Tang J, Yuan J, Zhang K, Yu X, Sun Y et al (2018) Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chem Phys Lett 693:60–65. https://doi.org/10.1016/j.cplett.2017.12.052

    CAS  Article  Google Scholar 

  56. 56.

    Xu X, Yang J, Zhou X, Jiang S, Chen W, Liu Z (2020) Highly crumpled graphene-like material as compression-resistant electrode material for high energy-power density supercapacitor. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125525

    Article  Google Scholar 

  57. 57.

    Wang J, Ding B, Xu Y, Shen L, Dou H, Zhang X (2015) Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl Mater Interfaces 7(40):22284–22291. https://doi.org/10.1021/acsami.5b05428

    CAS  Article  Google Scholar 

  58. 58.

    Zou Y, Kinloch IA, Dryfe RA (2014) Nitrogen-doped and crumpled graphene sheets with improved supercapacitance. J Mater Chem A 2(45):19495–19499. https://doi.org/10.1039/C4TA04076G

    CAS  Article  Google Scholar 

  59. 59.

    Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals (pp. 320–329). https://doi.org/10.1142/9789814287005_0033

  60. 60.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211. https://doi.org/10.1126/science.1249625

    CAS  Article  Google Scholar 

  61. 61.

    Tang LA, Lee WC, Shi H, Wong EY, Sadovoy A, Gorelik S et al (2012) Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small 8(3):423–431. https://doi.org/10.1002/smll.201101690

    CAS  Article  Google Scholar 

  62. 62.

    Wang Y, Wu Y, Huang Y, Zhang F, Yang X, Ma Y, Chen Y (2011) Preventing graphene sheets from restacking for high-capacitance performance. J Phys Chem C 115(46):23192–23197. https://doi.org/10.1021/jp206444e

    CAS  Article  Google Scholar 

  63. 63.

    Yu Y, Sun Y, Cao C, Yang S, Liu H, Li P et al (2014) Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. J Mater Chem A 2(21):7706–7710. https://doi.org/10.1039/C4TA00905C

    CAS  Article  Google Scholar 

  64. 64.

    Luo J, Jang HD, Huang J (2013) Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2):1464–1471. https://doi.org/10.1021/nn3052378

    CAS  Article  Google Scholar 

  65. 65.

    Mao S, Wen Z, Kim H, Lu G, Hurley P, Chen J (2012) A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 6(8):7505–7513. https://doi.org/10.1021/nn302818j

    CAS  Article  Google Scholar 

  66. 66.

    An C, Wang Y, Li L, Qiu F, Xu Y, Xu C et al (2014) Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochim Acta 133:180–187. https://doi.org/10.1016/j.electacta.2014.04.056

    CAS  Article  Google Scholar 

  67. 67.

    Nonaka LH, Almeida TS, Aquino CB, Domingues SH, Salvatierra RV, Souza VH (2020) Crumpled graphene decorated with manganese ferrite nanoparticles for hydrogen peroxide sensing and electrochemical supercapacitors. ACS Appl Nano Mater 3(5):4859–4869. https://doi.org/10.1021/acsanm.0c01012

    CAS  Article  Google Scholar 

  68. 68.

    Zhu J, Dong S, Xu Y, Guo H, Lu X, Zhang X (2019) Oxygen-enriched crumpled graphene-based symmetric supercapacitor with high gravimetric and volumetric performances. J Electroanal Chem 833:119–125. https://doi.org/10.1016/j.jelechem.2018.11.032

    CAS  Article  Google Scholar 

  69. 69.

    Tao Y, Sui ZY, Han BH (2020) Advanced porous graphene materials: from in-plane pore generation to energy storage applications. J Mater Chem A 8(13):6125–6143. https://doi.org/10.1039/D0TA00154F

    CAS  Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

EEM: Conception, design of the article and interpreting the relevant literature. MB: Drafting, critical revision for important intellectual content, editing and supervision of the work.

Corresponding author

Correspondence to Manoj Balachandran.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathew, E.E., Balachandran, M. Crumpled and porous graphene for supercapacitor applications: a short review. Carbon Lett. (2021). https://doi.org/10.1007/s42823-021-00229-2

Download citation

Keywords

  • Crumpled graphene
  • Porous graphene
  • Supercapacitors
  • Graphene oxide
  • Specific surface area