Comparison of ultrasonic-treated rice husk carbon with the conventional carbon black towards improved mechanical properties of their EPDM composites

Abstract

Because of depletion of fossil fuel from the earth curst and increase of environmental concerns, in search of an efficient alternative to the traditional carbon black (CB), a biochar known as rice husk carbon (RHC) has been examined here as a filler material to develop the EPDM composite. In this regard, the ball milled RHC was further treated with ultrasonic wave and used with or without its surface treatment by the silane coupling agent [i.e., 3-mercaptopropyl triethoxysilane (3-MPTMS)]. Among the RHC, ultrasonic treated RHC (UHC) and silane treated UHC (USHC), the EPDM composite of USHC showed nearly similar tensile strength to that of the CB (e.g., CB: 33.88 kgf/cm2, USHC: 31.38 kgf/cm2 at 20 wt% filler loading) with an enhanced elongation at break (e.g., CB: 206%, USHC: 342% at 20 wt% filler loading) and surprisingly much less compression set value (CB: 40.87%, USHC: 18.95% even after 40 wt% of filler loading). Compared to RHC, the UHC also showed its better performance next to the USHC. In addition to presence of both the carbon and silica in RHC and additional silica within the flexible aliphatic chain in USHC, the disintegration of RHC by ultrasonic treatment towards its narrow particle distribution, smaller particle size, and increased surface area is considered very much effective to develop the corresponding high performance EPDM composites. Thus, the use of waste material, i.e., rice husk through the ultrasonication of RHC followed by its surface treatment can be used as a potential filler material to prepare the environment friendly and cost effective high performing composites to be used in different efficient end products, and motivated further for industrial upscaling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Jacob C, Bhowmick A, De P, De S (2003) Utilization of powdered EPDM scrap in EPDM compound. Rubber Chem Technol 76(1):36–59

    CAS  Article  Google Scholar 

  2. 2.

    Dijkhuis KA, Noordermeer JW, Dierkes WK (2009) The relationship between crosslink system, network structure and material properties of carbon black reinforced EPDM. Eur Polym J 45(11):3302–3312

    CAS  Article  Google Scholar 

  3. 3.

    Arroyo M, Lopez-Manchado M, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44(8):2447–2453

    CAS  Article  Google Scholar 

  4. 4.

    Rattanasom N, Saowapark TA, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377

    CAS  Article  Google Scholar 

  5. 5.

    Tan H, Isayev AI (2008) Comparative study of silica-, nanoclay-and carbon black-filled EPDM rubbers. J Appl Polym Sci 109(2):767–774

    CAS  Article  Google Scholar 

  6. 6.

    Choi SS, Park BH, Song H (2004) Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica. Polym Adv Technol 15(3):122–127

    CAS  Article  Google Scholar 

  7. 7.

    Wang R, Yao H, Lei W, Zhou X, Zhang L, Hua KC, Kulig J (2013) Morphology, interfacial interaction, and properties of a novel bioelastomer reinforced by silica and carbon black. J Appl Polym Sci 129(3):1546–1554

    CAS  Article  Google Scholar 

  8. 8.

    Mostafa A, Abouel-Kasem A, Bayoumi M, El-Sebaie M (2009) Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds. Mater Des 30(5):1561–1568

    CAS  Article  Google Scholar 

  9. 9.

    Shen L, Xia L, Han T, Wu H, Guo S (2016) Improvement of hardness and compression set properties of EPDM seals with alternating multilayered structure for PEM fuel cells. Int J Hydrogen Energy 41(48):23164–23172

    CAS  Article  Google Scholar 

  10. 10.

    Liang G, Zhu H, Zhang Z, Wu Q, Du J (2019) Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash. J Clean Prod 230:603–612

    CAS  Article  Google Scholar 

  11. 11.

    Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485

    Article  Google Scholar 

  12. 12.

    Liu Y, Guo Y, Gao W, Wang Z, Ma Y, Wang Z (2012) Simultaneous preparation of silica and activated carbon from rice husk ash. J Clean Prod 32:204–209

    CAS  Article  Google Scholar 

  13. 13.

    Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y (2016) A green technology for the preparation of high capacitance rice husk-based activated carbon. J Clean Prod 112:1190–1198

    CAS  Article  Google Scholar 

  14. 14.

    Panwar V, Bansal A, Ray SS, Jain SL (2016) Renewable waste rice husk grafted oxo-vanadium catalyst for oxidation of tertiary amines to N-oxides. RSC Adv 6(75):71550–71556

    CAS  Article  Google Scholar 

  15. 15.

    Ullah Z, Man Z, Khan AS, Muhammad N, Mahmood H, Ghanem OB, Ahmad P, Shah M-UH, Raheel M (2019) Extraction of valuable chemicals from sustainable rice husk waste using ultrasonic assisted ionic liquids technology. J Clean Prod 220:620–629

    CAS  Article  Google Scholar 

  16. 16.

    Hsieh YY, Chen TY, Kuo WC, Lai YS, Yang PF, Lin HP (2016) Rice husk-derived porous carbon/silica particles as green iller for electronic package application. J Appl Polym Sci 134(15):44699. https://doi.org/10.1002/APP.44699

    Article  Google Scholar 

  17. 17.

    Lee KH, Oh JS (2019) Effects of ultrasonic surface treatment on rice husk carbon. Carbon Lett 29(1):89–97

    Article  Google Scholar 

  18. 18.

    Li M-C, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: influence of particle size and loading. Mater Des 63:565–574

    CAS  Article  Google Scholar 

  19. 19.

    Kumar V, Sinha S, Saini MS, Kanungo BK, Biswas P (2010) Rice husk as reinforcing filler in polypropylene composites. Rev Chem Eng 26(1–2):41–53

    CAS  Google Scholar 

  20. 20.

    Wang H, Schubel P, Yi X, Zhu J, Ulven C, Qiu Y (2015) Green composite materials. Adv Mater Sci Eng. https://doi.org/10.1155/2015/487416

    Article  Google Scholar 

  21. 21.

    Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y (2011) Application studies of activated carbon derived from rice husks produced by chemical-thermal process—a review. Adv Colloid Interface Sci 163(1):39–52

    CAS  Article  Google Scholar 

  22. 22.

    Ojinmah N, Uchechukwu T, Ezeh V, Ogbobe O (2017) Studies on the effect of rice husk semi-nano filler on the mechanical properties of epoxidized natural rubber composite. Eur J Adv Eng Technol 4(3):164–171

    CAS  Google Scholar 

  23. 23.

    Yam R, Mak D (2014) A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. J Clean Prod 67:277–284

    CAS  Article  Google Scholar 

  24. 24.

    Sae-oui P, Thepsuwan U, Hatthapanit K (2004) Effect of curing system on reinforcing efficiency of silane coupling agent. Polym Test 23(4):397–403

    CAS  Article  Google Scholar 

  25. 25.

    Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639

    CAS  Article  Google Scholar 

  26. 26.

    Bera M, Gupta P, Maji PK (2019) Structural/load-bearing characteristics of polymer–carbon composites, carbon-containing polymer composites. Springer, Berlin, pp 457–502

    Google Scholar 

  27. 27.

    Ankyu E, Kubota Y, Noguchi R (2017) Eluted soluble silica content in rice husk charcoal produced by rice husk burner. J Jpn Inst Energy 96(7):217–227

    CAS  Article  Google Scholar 

  28. 28.

    Choi SS, Chung KH, Nah C (2003) Improvement of properties of silica-filled styrene–butadiene rubber (SBR) compounds using acrylonitrile–styrene–butadiene rubber (NSBR). Polym Adv Technol 14(8):557–564

    CAS  Article  Google Scholar 

  29. 29.

    Le GT, Chanlek N, Manyam J, Opaprakasit P, Grisdanurak N, Sreearunothai P (2019) Insight into the ultrasonication of graphene oxide with strong changes in its properties and performance for adsorption applications. Chem Eng J 373:1212–1222

    CAS  Article  Google Scholar 

  30. 30.

    Sae-oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2007) Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings. Eur Polym J 43(1):185–193

    CAS  Article  Google Scholar 

  31. 31.

    Nasir M, Choo C (1989) Cure characteristics and mechanical properties of carbon black filled styrene-butadiene rubber and epoxidized natural rubber blends. Eur Polym J 25(4):355–359

    CAS  Article  Google Scholar 

  32. 32.

    Siciński M, Bieliński DM, Szymanowski H, Gozdek T, Piątkowska A (2020) Low-temperature plasma modification of carbon nanofillers for improved performance of advanced rubber composites. Polym Bull 77(2):1015–1048

    Article  Google Scholar 

  33. 33.

    Szadkowski B, Marzec A, Rybiński P (2020) Silane treatment as an effective way of improving the reinforcing activity of carbon nanofibers in nitrile rubber composites. Materials 13(16):3481

    CAS  Article  Google Scholar 

  34. 34.

    Kaynak A, Polat A, Yilmazer U (1996) Some microwave and mechanical properties of carbon fiber–polypropylene and carbon black–polypropylene composites. Mater Res Bull 31(10):1195–1206

    CAS  Article  Google Scholar 

  35. 35.

    Imoisili P, Ukoba K, Adejugbe I, Adgidzi D, Olusunle S (2013) Mechanical properties of rice husk/carbon black hybrid natural rubber composite. Chem Mater Res 3(8):12

    Google Scholar 

  36. 36.

    Wang M, Morris M, Kutsovsky Y (2008) Effect of fumed silica surface area on silicone rubber reinforcement. Kautschuk und Gummi Kunststoffe 61(3):107

    Google Scholar 

  37. 37.

    Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear. Mater Des 31(2):677–686

    CAS  Article  Google Scholar 

  38. 38.

    Wang M-J, Wolff S, Donnet J-B (1991) Filler–elastomer interactions. Part III. Carbon-black-surface energies and interactions with elastomer analogs. Rubber Chem Technol 64(5):714–736

    CAS  Article  Google Scholar 

  39. 39.

    Hong CK, Kim H, Ryu C, Nah C, Huh YI, Kaang S (2007) Effects of particle size and structure of carbon blacks on the abrasion of filled elastomer compounds. J Mater Sci 42(20):8391–8399

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is results of a study on the Economic Cooperation and Development Project (P0008665), supported by the Ministry of Trade, Industry and Energy and the BK21 Plus Program (Future-oriented innovative brain raising type, 21A20151713274) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea(NRF)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeong Seok Oh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, I.T., Lee, K.H., Sinha, T.K. et al. Comparison of ultrasonic-treated rice husk carbon with the conventional carbon black towards improved mechanical properties of their EPDM composites. Carbon Lett. (2021). https://doi.org/10.1007/s42823-020-00223-0

Download citation

Keywords

  • Rice husk carbon
  • Ultrasonication
  • Biochar
  • Surface treatment
  • Tensile property
  • Compression set