Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor

Abstract

Heteroatoms in situ-doped hierarchical porous hollow-activated carbons (HPHACs) have been prepared innovatively by pyrolyzation of setaria viridis combined with alkaline activation for the first time. The micro-morphology, pore structure, chemical compositions, and electrochemical properties are researched in detail. The obtained HPHACs are served as outstanding electrode materials in electrochemical energy storage ascribe to the particular hierarchical porous and hollow structure, and the precursor setaria viridis is advantage of eco-friendly as well as cost-effective. Electrochemical measurement results of the HPHACs electrodes exhibit not only high specific capacitance of 350 F g−1 at 0.2 A g−1, and impressive surface specific capacitance (Cs) of 49.9 μF cm−2, but also substantial rate capability of 68% retention (238 F g−1 at 10 A g−1) and good cycle stability with 99% retention over 5000 cycles at 5 A g−1 in 6 M KOH. Besides, the symmetrical supercapacitor device based on the HPHACs electrodes exhibits excellent energy density of 49.5 Wh kg−1 at power density of 175 W kg−1, but still maintains favorable energy density of 32.0 Wh kg−1 at current density of 1 A g−1 in 1-ethy-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid electrolyte, and the excellent cycle stability behaviour shows the nearly 97% ratio capacitance retention of the initial capacitance after 10,000 cycles at current density of 2 A g−1. Overall, the results indicate that HPHACs derived from setaria viridis have appealing electrochemical performances thus are promising electrode materials for supercapacitor devices and large-scale applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574

    CAS  Article  Google Scholar 

  2. 2.

    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797

    CAS  Article  Google Scholar 

  3. 3.

    Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127

    CAS  Article  Google Scholar 

  4. 4.

    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1

    Article  Google Scholar 

  5. 5.

    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213

    CAS  Article  Google Scholar 

  6. 6.

    Zhang J, Terrones M, Park CR, Mukherjee R, Monthioux M, Koratkar N, Kim YS, Hurt R, Frackowiak E, Enoki T, Chen Y, Chen Y, Bianco A (2016) Carbon science in 2016: status, challenges and perspectives. Carbon 98:708

    CAS  Article  Google Scholar 

  7. 7.

    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828

    CAS  Article  Google Scholar 

  8. 8.

    Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99

    CAS  Article  Google Scholar 

  9. 9.

    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41

    CAS  Article  Google Scholar 

  10. 10.

    Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789

    CAS  Article  Google Scholar 

  11. 11.

    Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interf Sci 523:133

    CAS  Article  Google Scholar 

  12. 12.

    Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q (2013) Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta 87:401

    CAS  Article  Google Scholar 

  13. 13.

    Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118

    CAS  Article  Google Scholar 

  14. 14.

    Mi J, Wang XR, Fan R, Qu WH, Li WC (2012) Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors. Energy Fuels 26:5321

    CAS  Article  Google Scholar 

  15. 15.

    Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462

    CAS  Article  Google Scholar 

  16. 16.

    Choi WS, Shim WG, Ryu DW, Hwang MJ, Moon H (2012) Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous Mesoporous Mater 155:274

    CAS  Article  Google Scholar 

  17. 17.

    Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C (2012) Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol 111:185

    CAS  Article  Google Scholar 

  18. 18.

    Wang K, Yan R, Zhao N, Tian X, Li X, Lei S, Song Y, Guo Q, Liu L (2016) Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Mater Lett 174:249

    CAS  Article  Google Scholar 

  19. 19.

    Wang K, Song Y, Yan R, Zhao N, Tian X, Li X, Guo Q, Liu Z (2017) High capacitive performance of hollow activated carbon fibers derived from willow catkins. Appl Surf Sci 394:569

    CAS  Article  Google Scholar 

  20. 20.

    Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1

    CAS  Article  Google Scholar 

  21. 21.

    Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912

    CAS  Article  Google Scholar 

  22. 22.

    Chen W, Zhang H, Huang Y, Wang W (2010) A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J Mater Chem 20:4773

    CAS  Article  Google Scholar 

  23. 23.

    Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49:838

    CAS  Article  Google Scholar 

  24. 24.

    Zhi L, Li Z, Shalchi AB, Xuehai T, Zhanwei X, Huanlei W, David M (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2:431

    Article  CAS  Google Scholar 

  25. 25.

    Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877

    Article  CAS  Google Scholar 

  26. 26.

    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863

    CAS  Article  Google Scholar 

  27. 27.

    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102

    CAS  Article  Google Scholar 

  28. 28.

    Tian X, Li X, Yang T, Wang K, Wang H, Song Y, Liu Z, Guo Q, Chen C (2017) Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochim Acta 247:1060

    CAS  Article  Google Scholar 

  29. 29.

    Tian X, Li X, Yang T, Wang K, Wang H, Song Y, Liu Z, Guo Q (2018) Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Appl Surf Sci 434:49

    CAS  Article  Google Scholar 

  30. 30.

    Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interf 4:5800

    CAS  Article  Google Scholar 

  31. 31.

    Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249

    CAS  Article  Google Scholar 

  32. 32.

    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556

    CAS  Article  Google Scholar 

  33. 33.

    Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78:349

    Article  Google Scholar 

  34. 34.

    Tsamba AJ, Yang W, Blasiak W (2006) Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol 87:523

    CAS  Article  Google Scholar 

  35. 35.

    Liu Y, Chae HG, Choi YH, Kumar S (2015) Preparation of low density hollow carbon fibers by bi-component gel-spinning method. J Mater Sci 50:3614

    CAS  Article  Google Scholar 

  36. 36.

    Guan T, Li K, Zhao J, Zhao R, Zhang G, Zhang D, Wang J (2017) Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. J Mater Chem A 5:15869

    CAS  Article  Google Scholar 

  37. 37.

    Guo Y, Shi Z, Chen M, Wang C (2014) Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J Power Sources 252:235

    CAS  Article  Google Scholar 

  38. 38.

    Zheng Z, Gao Q (2011) Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol–formaldehyde resins with high performance for supercapacitors. J Power Sources 196:1615

    CAS  Article  Google Scholar 

  39. 39.

    Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710

    CAS  Article  Google Scholar 

  40. 40.

    Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267

    Article  Google Scholar 

  41. 41.

    Zolyomi VKJ, Kurti J (2011) Resonance raman spectroscopy of graphite and graphene. Phys Status Solidi-b 248:2435

    CAS  Article  Google Scholar 

  42. 42.

    Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379

    CAS  Article  Google Scholar 

  43. 43.

    Wang C, Zhao Z, Li X, Yan R, Wang J, Li A, Duan X, Wang J, Liu Y, Wang J (2017) Three-dimensional framework of graphene nanomeshes shell/Co3O4 synthesized as superior bifunctional electrocatalyst for Zinc-Air batteries. ACS Appl Mater Interf 9:41273

    CAS  Article  Google Scholar 

  44. 44.

    Chen J, Xu J, Zhou S, Zhao N, Wong CP (2016) Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25:193

    CAS  Article  Google Scholar 

  45. 45.

    Chen Y, Liu Z, Sun L, Lu Z, Zhuo K (2018) Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J Power Sour 390:215

    CAS  Article  Google Scholar 

  46. 46.

    Tian X, Zhao N, Song Y, Wang K, Xu D, Li X, Guo Q, Liu L (2015) Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution. Electrochim Acta 185:40

    CAS  Article  Google Scholar 

  47. 47.

    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438

    CAS  Article  Google Scholar 

  48. 48.

    Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Markus A, Maria-Magdalena T (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202

    CAS  Article  Google Scholar 

  49. 49.

    Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154

    CAS  Article  Google Scholar 

  50. 50.

    White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401

    CAS  Article  Google Scholar 

  51. 51.

    Zhai D, Li B, Kang F, Du H, Xu C (2010) Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous Mesoporous Mater 130:224

    CAS  Article  Google Scholar 

  52. 52.

    Sun G, Li K, Xie L, Wang J, Li Y (2012) Preparation of mesoporous carbon spheres with a bimodal pore size distribution and its application for electrochemical double layer capacitors based on ionic liquid as the electrolyte. Microporous Mesoporous Mater 151:282

    CAS  Article  Google Scholar 

  53. 53.

    Zhou J, Xing W, Zhuo S, Zhao Y (2011) Capacitive performance of ordered mesoporous carbons with tunable porous texture in ionic liquid electrolytes. Solid State Sci 13:2000

    CAS  Article  Google Scholar 

  54. 54.

    Zhou D, Wang H, Mao N, Chen Y, Zhou Y, Yin T, Xie H, Liu W, Chen S, Wang X (2017) High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous Mesoporous Mater 241:202

    CAS  Article  Google Scholar 

  55. 55.

    Tee E, Tallo I, Thomberg T, Jänes A, Lust E (2016) Supercapacitors based on activated silicon carbide-derived carbon materials and ionic liquid. J Electrochem Soc 163:A1317

    CAS  Article  Google Scholar 

  56. 56.

    Pandey GP, Liu T, Hancock C, Li Y, Sun XS, Li J (2016) Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. J Power Sources 328:510

    CAS  Article  Google Scholar 

  57. 57.

    Shen B, Zhang X, Guo R, Lang J, Chen J, Yan X (2016) Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. J Mater Chem A 4:8180

    CAS  Article  Google Scholar 

  58. 58.

    Zhang X, Wang L, Peng J, Cao P, Cai X, Li J, Zhai M (2015) A flexible ionic liquid gelled PVA-Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv Mater Interf 2:1500267

    Article  CAS  Google Scholar 

  59. 59.

    Shaikh JS, Shaikh NS, Kharade R, Beknalkar SA, Patil JV, Suryawanshi MP, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2018) Symmetric supercapacitor: sulphurized graphene and ionic liquid. J Colloid Interf Sci 527:40

    CAS  Article  Google Scholar 

  60. 60.

    He X, Ling P, Qiu J, Yu M, Zhang X, Yu C, Zheng M (2013) Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J Power Sources 240:109

    CAS  Article  Google Scholar 

  61. 61.

    Zou Z, Liu T, Jiang C (2018) Highly mesoporous carbon flakes derived from a tubular biomass for high power electrochemical energy storage in organic electrolyte. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2018.10.036

    Article  Google Scholar 

  62. 62.

    Sun J, Niu J, Liu M, Ji J, Dou M, Wang F (2018) Biomass-derived nitrogen-doped porous carbons with tailared hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci 427:807

    CAS  Article  Google Scholar 

  63. 63.

    Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ (2015) Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces 7:3684

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the Fund for Shanxi “1331 Project” Key Subjects Construction (1331KSC), Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technology (2017), the Scientific Research Start-up Funds provided by Taiyuan Institute of Technology and the National Natural Science Foundation Item (21576277).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Yan Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1711 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, R., Wang, K., Tian, X. et al. Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor. Carbon Lett. 30, 331–344 (2020). https://doi.org/10.1007/s42823-019-00102-3

Download citation

Keywords

  • Hierarchical porous hollow-activated carbons
  • Setaria viridis
  • Supercapacitor
  • Energy storage
  • High energy density