Evaluation of composite PAN fibers incorporated with carbon nanotubes and titania and their performance during the microwave-induced pre-oxidation


The composite PAN fibers which incorporated with CNTs and Titania were prepared by mean of wet spinning. These fibers were then pre-oxidized with microwave heating in an air atmosphere. A combination of characterizations was carried out to study the impact of nanoparticles fillers on the properties of as-spun fibers and their performance during the microwave pre-oxidation. The addition of an equal amount of fillers made obvious changes in the chemical and crystalline structure, consequently improves the strength, and this could lower the capability to creep over a wide range of temperatures in the subsequent processes. FTIR and NMR analyses results of the pre-oxidized fibers exhibited clear changes in the PAN structure, where the dehydrogenation reaction and the degree of cyclization were investigated. Additional confirmation of the occurrence of cyclization reaction was achieved by XRD and thermal analysis. According to the TGA results, the pre-oxidized CNT1/Ti-PAN fibers exhibit greater thermal stability suggesting high carbon content and good quality could result in the dependent carbon fibers.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Aggour Y, Aziz M (2000) Degradation of polyacrylonitrile by low energy ion beam and UV radiation. Polym Test 19(3):261–267

    CAS  Article  Google Scholar 

  2. 2.

    Liu W, Wang M, Xing Z, Wu G (2012) The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors. Radiat Phy Chem 81(7):835–839

    CAS  Article  Google Scholar 

  3. 3.

    Fitzer E, Frohs W, Heine M (1986) Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24(4):387–395

    CAS  Article  Google Scholar 

  4. 4.

    Zhao W, Lu Y, Jiang J, Hu L, Zhou L (2015) The effect of γ-ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers. RSC Adv 5(30):23508–23518

    CAS  Article  Google Scholar 

  5. 5.

    Qin X, Lu Y, Xiao H, Hao Y, Pan D (2011) Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen. Carbon 49(13):4598–4600

    CAS  Article  Google Scholar 

  6. 6.

    Qin X, Lu Y, Xiao H, Zhao W (2013) Effect of heating and stretching polyacrylonitrile precursor fibers in steam on the properties of stabilized fibers and carbon fibers. Polym Eng Sci 53(4):827–832

    CAS  Article  Google Scholar 

  7. 7.

    Liu W, Wang M, Xing Z, Qi Y, Wu G (2012) Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process. Radiat Phy Chem 81(6):622–627

    CAS  Article  Google Scholar 

  8. 8.

    Pawde S, Deshmukh K (2008) Influence of γ irradiation on the properties of polyacrylonitrile films. J Appl Polym Sci 110(5):2569–2578

    CAS  Article  Google Scholar 

  9. 9.

    Park M, Choi Y, Lee S-Y, Kim H-Y, Park S-J (2014) Influence of electron-beam irradiation on thermal stabilization process of polyacrylonitrile fibers. J Ind Eng Chem 20(4):1875–1878

    CAS  Article  Google Scholar 

  10. 10.

    Yuan H, Wang Y, Liu P, Yu H, Ge B, Mei Y (2011) Effect of electron beam irradiation on polyacrylonitrile precursor fibers and stabilization process. J App Polym Sci 122(1):90–96

    CAS  Article  Google Scholar 

  11. 11.

    Naskar AK, Walker RA, Proulx S, Edie DD, Ogale AA (2005) UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon 43(5):1065–1072

    CAS  Article  Google Scholar 

  12. 12.

    Paiva M, Kotasthane P, Edie D, Ogale A (2003) UV stabilization route for melt-processible PAN-based carbon fibers. Carbon 41(7):1399–1409

    CAS  Article  Google Scholar 

  13. 13.

    Murthy MR, Radhakrishna S (1983) Radiation damage in polyacrylonitrile. Pramana 20(1):85–90

    CAS  Article  Google Scholar 

  14. 14.

    Miao P, Wu D, Zeng K, Xu G, Ce Zhao, Yang G (2010) Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polym Degrad Stab 95(9):1665–1671

    CAS  Article  Google Scholar 

  15. 15.

    Dietrich J, Hirt P, Herlinger H (1996) Electron-beam-induced cyclisation to obtain C-fibre precursors from polyacrylonitrile homopolymers. Eur Polym J 32(5):617–623

    CAS  Article  Google Scholar 

  16. 16.

    Luo J, Hunyar C, Feher L, Link G, Thumm M, Pozzo P (2004) Potential advantages for millimeter-wave heating of powdered metals. Int J Infrared Millim Waves 25(9):1271–1283

    CAS  Article  Google Scholar 

  17. 17.

    Obermayer D, Gutmann B, Kappe CO (2009) Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angewandte Chem 121(44):8471–8474

    Article  Google Scholar 

  18. 18.

    Liu J, Xiao S, Shen Z, Xu L, Zhang L, Peng J (2018) Study on the oxidative stabilization of polyacrylonitrile fibers by microwave heating. Polym Degrad Stab 150:86–91

    CAS  Article  Google Scholar 

  19. 19.

    Zhang C, Liu J, Guo S, Xiao S, Shen Z, Xu L (2018) Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate. Ceram Int 44(12):14377–14385

    CAS  Article  Google Scholar 

  20. 20.

    Elagib TH, Hassan EA, Fan C, Han K, Yu M (2018) Microwave pre-oxidation for polyacrylonitrile precursor coated with nano-carbon black. Polymer Eng Sci 59(3):457–464

    Article  CAS  Google Scholar 

  21. 21.

    Elagib TH, Hassan EA, Fan C, Han K, Yu M (2018) Single and hybrid electromagnetic absorbing coatings on polyacrylonitrile precursor to motivate the microwave pre-oxidation. Polym Degrad Stab 158:64–71

    CAS  Article  Google Scholar 

  22. 22.

    Jain R, Minus ML, Chae HG, Kumar S (2010) Processing, structure, and properties of PAN/MWNT composite fibers. Macromol Mater Eng 295(8):742–749

    CAS  Article  Google Scholar 

  23. 23.

    Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70(1):1–19

    CAS  Article  Google Scholar 

  24. 24.

    Newcomb BA, Gulgunje PV, Gupta K, Kamath MG, Liu Y, Giannuzzi LA, Chae HG, Kumar S (2015) Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym Eng Sci 55(11):2603–2614

    CAS  Article  Google Scholar 

  25. 25.

    Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69(3–4):406–413

    CAS  Article  Google Scholar 

  26. 26.

    Chae HG, Minus ML, Rasheed A, Kumar S (2007) Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 48(13):3781–3789

    CAS  Article  Google Scholar 

  27. 27.

    Shaowei L, Keming M, Xiaoqiang W, Xuhai X, Weikai X, Caixia J (2015) Fabrication and characterization of polymer composites surface coated Fe3O4/MWCNTs hybrid buckypaper as a novel microwave‐absorbing structure. J Appl Polym Sci 132 (20)

  28. 28.

    Zhang H, Quan L, Shi F, Li C, Liu H, Xu L (2018) Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers. Polymers 10(2):186

    Article  CAS  Google Scholar 

  29. 29.

    Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158(6):251–258

    CAS  Article  Google Scholar 

  30. 30.

    Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639

    CAS  Article  Google Scholar 

  31. 31.

    Zhao Y-q, Wang C-g, Bai Y-j, Chen G-w, Jing M, Zhu B (2009) Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere. J Colloid Interface Sci 329(1):48–53

    CAS  Article  Google Scholar 

  32. 32.

    Lee S, Kim J, Ku B-C, Kim J, Joh H-I (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 2(02):275

    CAS  Article  Google Scholar 

  33. 33.

    Fu Z, Ma J, Deng Y, Wu G, Cao C, Zhang H (2015) Structural evolution of poly (acrylonitrile-co-dimethyl itaconate) copolymer during thermal oxidative stabilization. Polym Adva Technol 26(4):322–329

    CAS  Article  Google Scholar 

  34. 34.

    Karacan İ, Erdoğan G (2012) An investigation on structure characterization of thermally stabilized polyacrylonitrile precursor fibers pretreated with guanidine carbonate prior to carbonization. Polym Eng Sci 52(5):937–952

    CAS  Article  Google Scholar 

  35. 35.

    Dalton S, Heatley F, Budd PM (1999) Thermal stabilization of polyacrylonitrile fibres. Polymer 40(20):5531–5543

    CAS  Article  Google Scholar 

  36. 36.

    Kong L, Liu H, Cao W, Xu L (2014) PAN fiber diameter effect on the structure of PAN-based carbon fibers. Fibers Polym 15(12):2480–2488

    CAS  Article  Google Scholar 

  37. 37.

    Wang Y, Xu L, Wang M, Pang W, Ge X (2014) Structural identification of polyacrylonitrile during thermal treatment by selective 13C labeling and solid-state 13C NMR spectroscopy. Macromolecules 47(12):3901–3908

    CAS  Article  Google Scholar 

  38. 38.

    Zhao J, Zhang J, Zhou T, Liu X, Yuan Q, Zhang A (2016) New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: online tracking by two-dimensional correlation FTIR spectroscopy. RSC Adv 6(6):4397–4409

    CAS  Article  Google Scholar 

  39. 39.

    Fei J, Luo W, Huang J, Ouyang H, Wang H, Cao L (2015) Effect of hydrothermal modified carbon fiber through Diels-Alder reaction and its reinforced phenolic composites. RSC Adv 5(79):64450–64455

    CAS  Article  Google Scholar 

  40. 40.

    Jain MK, Abhiraman A (1987) Conversion of acrylonitrile-based precursor fibres to carbon fibres. J Mater Sci 22(1):278–300

    CAS  Article  Google Scholar 

  41. 41.

    Ogawa H, Saito K (1995) Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon 33(6):783–788

    CAS  Article  Google Scholar 

  42. 42.

    Park O-K, Lee S, Joh H-I, Kim JK, Kang P-H, Lee JH, Ku B-C (2012) Effect of functional groups of carbon nanotubes on the cyclization mechanism of polyacrylonitrile (PAN). Polymer 53(11):2168–2174

    CAS  Article  Google Scholar 

  43. 43.

    Wang J, Hu L, Yang C, Zhao W, Lu Y (2016) Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers. RSC Adv 6(77):73404–73411

    CAS  Article  Google Scholar 

  44. 44.

    Liu S, Han K, Chen L, Zheng Y, Yu M (2015) Influence of air circulation on the structure and properties of melt-spun PAN precursor fibers during thermal oxidation. RSC Adv 5(47):37669–37674

    CAS  Article  Google Scholar 

  45. 45.

    Liu Y, Chae HG, Kumar S (2010) Stabilization of Gel-spun polyacrylonitrile/carbon nanotubes composite fibers. Part II: stabilization kinetics and effects of various chemical reactions, pp 59

  46. 46.

    Potter W, Scott G (1972) Initiation of low temperature degradation of polyacrylonitrile. Nat Phys Sci 236(63):30

    CAS  Article  Google Scholar 

  47. 47.

    Ashkarran AA, Fakhari M, Hamidinezhad H, Haddadi H, Nourani MR (2015) TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. J Mater Res Technol 4(2):126–132

    CAS  Article  Google Scholar 

  48. 48.

    Hamid SBA, Tan TL, Lai CW, Samsudin EM (2014) Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye. Chin J Catal 35(12):2014–2019. https://doi.org/10.1016/S1872-2067(14)60210-2

    CAS  Article  Google Scholar 

  49. 49.

    Ji M, Wang C, Bai Y, Yu M, Wang Y (2007) Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polym Bull 59(4):527–536

    CAS  Article  Google Scholar 

  50. 50.

    Karacan I, Erdoğan G (2012) The role of thermal stabilization on the structure and mechanical properties of polyacrylonitrile precursor fibers. Fibers polym 13(7):855–863

    CAS  Article  Google Scholar 

  51. 51.

    Ju A, Liu Z, Luo M, Xu H, Ge M (2013) Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor. J Polym Res 20(12):318

    Article  CAS  Google Scholar 

  52. 52.

    Ouyang Q, Cheng L, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab 93(8):1415–1421

    CAS  Article  Google Scholar 

  53. 53.

    Fitzer E, Müller D (1975) The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 13(1):63–69

    CAS  Article  Google Scholar 

  54. 54.

    Rangarajan P, Bhanu V, Godshall D, Wilkes G, McGrath J, Baird D (2002) Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers. Polymer 43(9):2699–2709

    CAS  Article  Google Scholar 

  55. 55.

    Liu HC, Chien A-T, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin-and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustaina Chem Eng 3(9):1943–1954

    CAS  Article  Google Scholar 

  56. 56.

    Karacan I, Erdoğan G (2012) A study on structural characterization of thermal stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers Polym 13(3):329–338

    CAS  Article  Google Scholar 

  57. 57.

    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393(1–2):1–11

    Article  CAS  Google Scholar 

  58. 58.

    Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon 49(13):4466–4476

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Keqing Han or Muhuo Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1753 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elagib, T.H.H., Hassan, E.A.M., Liu, B. et al. Evaluation of composite PAN fibers incorporated with carbon nanotubes and titania and their performance during the microwave-induced pre-oxidation. Carbon Lett. 30, 235–245 (2020). https://doi.org/10.1007/s42823-019-00092-2

Download citation


  • Carbon nanotube (CNT)
  • Titania (TiO2)
  • Polyacrylonitrile (PAN)
  • Spinning
  • Microwave