Skip to main content
Log in

Emerging sorption pairs for heat pump applications: an overview

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

The research efforts to find an alternative system for the cooling/heating application have been intensified worldwide since the imposition of international restrictions on production and use of refrigerants accountable for ODP and GWP. Nowadays, the demand for the cooling/heating system is increased also due to safeguarding the adverse environmental effect which results in additional consumption of electrical energy and ecological problem. The use of adsorption system is considering as a promising alternative for the last few decades. The low heat and mass transfer coefficient of the adsorbent material is the main bottleneck of the adsorption cooling/heating system and resulting in large size and low performance. To make the system commercially competitive with the conventional system, high-performance refrigerant/adsorbent pairs are required. In this review, the favorable achievement in adsorbent development in terms of porous properties and their interaction with natural refrigerants is focused. Current application of different working pairs and their future prospect with special reference to their utilization are studied. Future research direction of adsorption working pairs is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A0 ~ A3 :

Adjustable parameter (−)

B0 ~ B3 :

Adjustable parameter (−)

\( b_{0} \) :

Equilibrium constant (kPa−1 or MPa−1)

\( c_{{{\text{p}},{\text{Ad}}}} \) :

Specific heat capacity of adsorbent (J g−1 K−1)

\( c_{{{\text{p}},{\text{ref}}}} \) :

Specific heat capacity of refrigerant (J g−1 K−1)

\( E \) :

Adsorption characteristic energy (kJ mol−1)

\( t \) :

Heterogeneity constant in Tóth equation (–)

h f :

Fluid enthalpy (kJ kg−1)

\( h_{\text{fg}} \) :

Latent heat of vaporization (kJ kg−1)

\( k \) :

Freundlich constant (–)

\( n \) :

Exponent of D-A equation (–)

\( P \) :

Pressure (kPa or MPa)

\( P_{\text{c}} \) :

Pressure at critical point (kPa or MPa)

\( P_{\text{s}} \) :

Saturation pressure (kPa or MPa)

\( Q \) :

Heat energy (J)

Q st :

Isosteric heat of adsorption (kJ kg−1)

\( q \) :

Volumetric adsorption uptake (cm3 g−1)

\( q_{0} \) :

Maximum volumetric adsorption capacity (cm3 g−1)

\( R \) :

Gas constant (J mol−1 K−1)

\( T \) :

Temperature (°C or K)

\( T_{\text{C}} \) :

Temperature at critical point (°C or K)

TPh:

Preheating temperature (°C)

\( V_{\text{m}} \) :

Molar volume (cm3 g−1)

v m :

Pore volume of the adsorbent (cm3 g−1)

V t :

Specific volume of liquid carbon dioxide (cm3 g−1)

\( W \) :

Equilibrium uptake (kg kg−1)

\( W_{0} \) :

Maximum equilibrium uptake (kg kg−1)

z :

Constant for pseudo saturated vapor pressure (−)

\( \alpha \) :

Thermal diffusivity (m2 s−1)

\( \alpha^{*} \) :

Thermal expansion of the adsorbed gas (K−1)

\( \rho \) :

Density (kg m−3)

\( \Delta W \) :

Effective uptake (–)

Ad:

Adsorbent

Ads:

Adsorption

Cond:

Condenser

Des:

Desorption

Eq:

Equilibrium

Evap:

Evaporator

Lat:

Latent heat

max:

Maximum

min:

Minimum

ref:

Refrigerant

s:

Saturation

sat:

Saturation

Sen:

Sensible

th:

Theoretical

Tot:

Total

References

  1. R.Z. Wang, R.G. Oliveira, Prog. Energy Combust. Sci. 32, 424–458 (2006)

    Google Scholar 

  2. Y. Fan, L. Luo, B. Souyri, Renew. Sustain. Energy Rev. 11, 1758–1775 (2007)

    Google Scholar 

  3. R.P. Sah, B. Choudhury, R.K. Das, Renew. Sustain. Energy Rev. 45, 123–134 (2015)

    Google Scholar 

  4. L.W. Wang, R.Z. Wang, R.G. Oliveira, Renew. Sustain. Energy Rev. 13, 518–534 (2009)

    Google Scholar 

  5. R.T. Yang, Gas separation by adsorption processes (Butterworths, London, 1987)

    Google Scholar 

  6. M. Suzuki, Adsorption engineering (Kodansha, New York City, 1990)

    Google Scholar 

  7. S.A. Greene, M.L. Moberg, E.M. Wilson, Anal. Chem. 28, 1369–1370 (1956)

    Google Scholar 

  8. A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption processes for water treatment and purification (Springer International Publishing, Berlin, 2017)

    Google Scholar 

  9. S. Li, Y. Chen, X. Pei, S. Zhang, X. Feng, J. Zhou, B. Wang, Chin. J. Chem. 34, 175–185 (2016)

    Google Scholar 

  10. S. Huang, C. Zhang, H. He, J. Environ. Sci. 21, 985–990 (2009)

    Google Scholar 

  11. M. Králik, Chem. Pap. 68, 1625–1638 (2014)

    Google Scholar 

  12. G.E. Hulse, Rev. Gen. Du Froid. 10, 281 (1929)

    Google Scholar 

  13. R. Plank, J. Kuprianoff, Haushalt-Kältemaschinen und kleingewerbliche Kühlanlagen (Springer, Heidelberg, 1934)

    Google Scholar 

  14. R. Wang, L. Wang, Chin. Sci. Bull. 50, 193–204 (2005)

    Google Scholar 

  15. A. Ghafoor, A. Munir, Renew. Sustain. Energy Rev. 43, 763–774 (2015)

    Google Scholar 

  16. UNEP Report of the Technology and Economic Assessment Panel, Montreal Protocol On Substances that Deplete the Ozone Layer, 2016

  17. J.M. Calm, Int. J. Refrig 31, 1123–1133 (2008)

    Google Scholar 

  18. Parties to the Protocol, Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1998

  19. B.O. Bolaji, Z. Huan, Renew. Sustain. Energy Rev. 18, 49–54 (2013)

    Google Scholar 

  20. F. Meunier, Appl. Therm. Eng. 61, 830–836 (2013)

    Google Scholar 

  21. W.S. Chang, C.C. Wang, C.C. Shieh, Appl. Therm. Eng. 27, 2195–2199 (2007)

    Google Scholar 

  22. D. Wang, J. Zhang, X. Tian, D. Liu, K. Sumathy, Renew. Sustain. Energy Rev. 30, 85–104 (2014)

    Google Scholar 

  23. S. Energy, J. Chem. Eng. Japan. 121, 121–122 (1984)

    Google Scholar 

  24. A. Sakoda, M. Suzuki, J. Chem. Eng. Japan. 17, 52–57 (1983)

    Google Scholar 

  25. A.O. Dieng, R.Z. Wang, Renew. Sustain. Energy Rev. 5, 313–342 (2000)

    Google Scholar 

  26. H. Demir, M. Mobedi, S. Ülkü, Renew. Sustain. Energy Rev. 12, 2381–2403 (2008)

    Google Scholar 

  27. B.B. Saha, I.I. El-Sharkawy, M.W. Shahzad, K. Thu, L. Ang, K.C. Ng, Appl. Therm. Eng. 97, 68–76 (2016)

    Google Scholar 

  28. K.C. Ng, G. Amy, A. Chakraborty, K. Thu, Y. Kim, Desalination 308, 161–179 (2012)

    Google Scholar 

  29. M. Wakil, M. Burhan, L. Ang, K. Choon, Desalination 413, 52–64 (2017)

    Google Scholar 

  30. D.C. Wang, Y.H. Li, D. Li, Y.Z. Xia, J.P. Zhang, Renew. Sustain. Energy Rev. 14, 344–353 (2010)

    Google Scholar 

  31. A.A. Askalany, M. Salem, I.M. Ismael, A.H.H. Ali, M.G. Morsy, B.B. Saha, Renew. Sustain. Energy Rev. 19, 565–572 (2013)

    Google Scholar 

  32. N.C. Srivastava, I.W. Eames, Appl. Therm. Eng. 18, 707–714 (1998)

    Google Scholar 

  33. R.E. Critoph, Appl. Therm. Eng. 16, 891–900 (1996)

    Google Scholar 

  34. B.B. Saha, E.C. Boelman, T. Kashiwagij 20, 983–994 (1995)

    Google Scholar 

  35. B.B. Saha, E.C. Boelman, T. Kashiwagi, Am. Soc. Heating, Refrig. Air-conditioning eng. ASHRAE trans. 101, 348–357 (1995)

  36. B.B. Saha, S. Koyama, J.B. Lee, K. Kuwahara, K.C.A. Alam, Y. Hamamoto, A. Akisawa, T. Kashiwagi, Int. J. Multiph. Flow 29, 1249–1263 (2003)

    Google Scholar 

  37. A.S. Uyun, T. Miyazaki, Y. Ueda, A. Akisawa, Energies 2, 531–544 (2009)

    Google Scholar 

  38. M.Z.I. Khan, B.B. Saha, K.C.A. Alam, A. Akisawa, T. Kashiwagi, Renew. Energy. 32, 365–381 (2007)

    Google Scholar 

  39. B.B. Saha, A. Akisawa, T. Kashiwagi, Renew. Energy 23, 93–101 (2001)

    Google Scholar 

  40. S. Mitra, P. Kumar, K. Srinivasan, P. Dutta, Appl. Therm. Eng. 72, 283–288 (2014)

    Google Scholar 

  41. M.Z.I. Khan, K.C.A. Alam, B.B. Saha, A. Akisawa, T. Kashiwagi, Renew. Energy. 33, 88–98 (2008)

    Google Scholar 

  42. B.B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K.C. Ng, H.T. Chua, Int. J. Refrig 26, 749–757 (2003)

    Google Scholar 

  43. K. Uddin, T. Miyazaki, S. Koyama, B.B. Saha, Int. J. Air-Cond. Refrig. 21, 1350024 (2013)

    Google Scholar 

  44. S. Mitra, K. Srinivasan, P. Kumar, S.S. Murthy, P. Dutta, Energy Procedia 49, 2261–2269 (2013)

    Google Scholar 

  45. K. Thu, A. Chakraborty, Y.-D. Kim, A. Myat, B.B. Saha, K.C. Ng, Desalination 308, 209–218 (2013)

    Google Scholar 

  46. J.W. Wu, E.J. Hu, M.J. Biggs, Appl. Energy 90, 316–322 (2012)

    Google Scholar 

  47. K. Thu, Y.-D. Kim, A. Myat, A. Chakraborty, K.C. Ng, Desalin. Water Treat. 51, 150–163 (2013)

    Google Scholar 

  48. B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130, 5390–5391 (2008)

    Google Scholar 

  49. M.P. Elizalde-González, J. Mattusch, A.A. Peláez-Cid, R. Wennrich, J. Anal. Appl. Pyrolysis 78, 185–193 (2007)

    Google Scholar 

  50. J. Matos, C. Nahas, L. Rojas, M. Rosales, J. Hazard. Mater. 196, 360–369 (2011)

    Google Scholar 

  51. C. Palma, L. Lloret, A. Puen, M. Tobar, E. Contreras, Chin. J Chem. Eng. 24, 521–528 (2016)

    Google Scholar 

  52. A. Ahmadpour, D.D. Do, Carbon N. Y. 34, 471–479 (1996)

    Google Scholar 

  53. M.J. Prauchner, F. Rodríguez-Reinoso, Microporous Mesoporous Mater. 152, 163–171 (2012)

    Google Scholar 

  54. W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, H. Xia, Ind. Crops Prod. 28, 190–198 (2008)

    Google Scholar 

  55. N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, J. Environ. Chem. Eng. 1, 658–666 (2013)

    Google Scholar 

  56. T. Otowa, R. Tanibata, M. Itoh, Gas Sep. Purif. 7, 241–245 (1993)

    Google Scholar 

  57. A.M. Buckley, M. Greenblatt, J. Chem. Educ. 71, 599 (1994)

    Google Scholar 

  58. I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 1–15 (2012)

    Google Scholar 

  59. Y.I. Aristov, Appl. Therm. Eng. 50, 1610–1618 (2013)

    Google Scholar 

  60. A. Mehmood, H. Ghafar, S. Yaqoob, U.F. Gohar, B. Ahmad, J. Dev. Drugs. 6, 1000174 (2017)

    Google Scholar 

  61. W. Gu, Z. Wu, R. Bo, W. Liu, G. Zhou, W. Chen, Z. Wu, Int. J. Electr. Power Energy Syst. 54, 26–37 (2014)

    Google Scholar 

  62. A. Sdiri, T. Higashi, S. Bouaziz, M. Benzina, Arab. J. Chem. 7, 486–493 (2014)

    Google Scholar 

  63. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)

    Google Scholar 

  64. M.A. Karakassides, A. Bourlinos, D. Petridis, L. Coche-Guerènte, P. Labbè, J. Mater. Chem. 10, 403–408 (2000)

    Google Scholar 

  65. T. Jiang, W. Shen, Y. Tang, Q. Zhao, M. Li, H. Yin, Appl. Surf. Sci. 254, 4797–4802 (2008)

    Google Scholar 

  66. S.-H. Wu, C.-Y. Mou, H.-P. Lin, Chem. Soc. Rev. 42, 3649–4258 (2013)

    Google Scholar 

  67. E.M. Björk, J. Chem. Educ. 94, 91–94 (2017)

    Google Scholar 

  68. N.I. Vazquez, Z. Gonzalez, B. Ferrari, Y. Castro, Boletín La Soc. Española Cerámica y Vidr. 56, 139–145 (2017)

    Google Scholar 

  69. H. Nakamura, Y. Matsui, J. Am. Chem. Soc. 117, 2651–2652 (1995)

    Google Scholar 

  70. M. Danish, T. Ahmad, Renew. Sustain. Energy Rev. 87, 1–21 (2018)

    Google Scholar 

  71. A.M. Elsayed, A.A. Askalany, A.D. Shea, H.J. Dakkama, S. Mahmoud, R. Al-Dadah, W. Kaialy, Renew. Sustain. Energy Rev. 79, 503–519 (2017)

    Google Scholar 

  72. S.K. Henninger, S. Ernst, L. Gordeeva, P. Bendix, D. Fröhlich, A.D. Grekova, L. Bonaccorsi, Y. Aristov, J. Jaenchen, Renew. Energy. 110, 59–68 (2017)

    Google Scholar 

  73. R. Srivastava, Catal. Today 309, 172–188 (2018)

    Google Scholar 

  74. C.S. Cundy, P.A. Cox, Chem. Rev. 103, 663–702 (2003)

    Google Scholar 

  75. J. Jänchen, D. Ackermann, H. Stach, W. Brösicke, Sol. Energy 76, 339–344 (2004)

    Google Scholar 

  76. A. Feliczak-Guzik, Microporous Mesoporous Mater. 259, 33–45 (2018)

    Google Scholar 

  77. M.J. Goldsworthy, Microporous Mesoporous Mater. 196, 59–67 (2014)

    Google Scholar 

  78. S. Shimooka, M. Yamazaki, T. Takewaki, E. Akashige, F. Ikehata, H. Kakiuchi, M. Kubota, H. Matsuda, Improvement of water adsorptivity of activated carbon for adsorption heat pump by hydrophilic treatment. In: Proc. Int. Symp. EcoTopia Sci. 2007, ISETS07, 2007: pp. 174–177

  79. S. Kayal, S. Baichuan, B.B. Saha, Int. J. Heat Mass Transf. 92, 1120–1127 (2016)

    Google Scholar 

  80. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T. Bae, J.R. Long, Chem. Rev. 112, 724–781 (2012)

    Google Scholar 

  81. F. Wei, D. Chen, Z. Liang, S. Zhao, Y. Luo, RSC Adv. 7, 46520–46528 (2017)

    Google Scholar 

  82. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276–279 (1999)

    Google Scholar 

  83. M. Eddaoudi, H. Li, O.M. Yaghi, J. Am. Chem. Soc. 122, 1391–1397 (2000)

    Google Scholar 

  84. K. Schlichte, T. Kratzke, S. Kaskel, Microporous Mesoporous Mater. 73, 81–88 (2004)

    Google Scholar 

  85. K.S. Walton, B. Mu, P.M. Schoenecker, J. Phys. Chem. C 114, 6464–6471 (2010)

    Google Scholar 

  86. H.-C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673–674 (2012)

    Google Scholar 

  87. H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Science. 336, 1018–1023 (2012)

    Google Scholar 

  88. B. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi, Science. 291, 1021–1023 (2001)

    Google Scholar 

  89. H.W.B. Teo, A. Chakraborty, S. Kayal, Appl. Therm. Eng. 110, 891–900 (2017)

    Google Scholar 

  90. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Google Scholar 

  91. K. Thu, A. Chakraborty, B.B. Saha, K.C. Ng, Appl. Therm. Eng. 50, 1596–1602 (2013)

    Google Scholar 

  92. I.I. El-Sharkawy, B.B. Saha, S. Koyama, K.C. Ng, Int. J. Heat Mass Transf. 49, 3104–3110 (2006)

    Google Scholar 

  93. I.I. El-Sharkawy, K. Uddin, T. Miyazaki, B.B. Saha, S. Koyama, H.-S. Kil, S.-H. Yoon, J. Miyawaki, Int. J. Heat Mass Transf. 81, 171–178 (2015)

    Google Scholar 

  94. A. Pal, K. Thu, S. Mitra, I.I. El-Sharkawy, B.B. Saha, H.-S. Kil, S.-H. Yoon, J. Miyawaki, Int. J. Heat Mass Transf. 110, 7–19 (2017)

    Google Scholar 

  95. B.B. Saha, I.I. El-Sharkawy, T. Miyazaki, S. Koyama, S.K. Henninger, A. Herbst, C. Janiak, Energy. 79, 363–370 (2015)

    Google Scholar 

  96. Z. Tamainot-Telto, R.E. Critoph, Appl. Therm. Eng. 21, 37–52 (2001)

    Google Scholar 

  97. C. Coste, G. Crozat, S. Mauran, Gaseous-solid reaction, US Patent 4595774 A, 1983

  98. T. Dellero, D. Sarmeo, P. Touzain, Appl. Therm. Eng. 19, 991–1000 (1999)

    Google Scholar 

  99. R.G. Oliveira, R.Z. Wang, Carbon N. Y. 45, 390–396 (2007)

    Google Scholar 

  100. L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang, Int. J. Refrig 27, 401–408 (2004)

    Google Scholar 

  101. G. Cacciola, G. Restuccia, L. Mercadante, Carbon N. Y. 33, 1205–1210 (1995)

    Google Scholar 

  102. L.W. Wang, Z. Tamainot-Telto, R. Thorpe, R.E. Critoph, S.J. Metcalf, R.Z. Wang, Renew. Energy. 36, 2062–2066 (2011)

    Google Scholar 

  103. Z. Jin, B. Tian, L. Wang, R. Wang, Chin. J Chem. Eng. 21, 676–682 (2013)

    Google Scholar 

  104. X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge, T.F. Ishugah, Int. J. Heat Mass Transf. 68, 435–443 (2014)

    Google Scholar 

  105. Y.I. Aristov, M.M. Tokarev, G. Cacciola, G. Restuccia, React. Kinet. Catal. Lett. 59, 325–333 (1996)

    Google Scholar 

  106. M.M. Tokarev, A. Freni, G. Restuccia, Y.I. Aristov, React. Kinet. Catal. Lett. 76, 295–301 (2002)

    Google Scholar 

  107. Y. Liu, Sci. China Ser. E. 46, 551 (2003)

    Google Scholar 

  108. B.B. Saha, A. Chakraborty, S. Koyama, Y.I. Aristov, Int. J. Heat Mass Transf. 52, 516–524 (2008)

    Google Scholar 

  109. K. Daou, R.Z. Wang, Z.Z. Xia, G.Z. Yang, Int. J. Refrig 30, 68–75 (2007)

    Google Scholar 

  110. L.X. Gong, R.Z. Wang, Z.Z. Xia, C.J. Chen, J. Chem. Eng. Data 55, 2920–2923 (2010)

    Google Scholar 

  111. J.H. Han, K.H. Lee, Appl. Therm. Eng. 21, 453–463 (2001)

    Google Scholar 

  112. L.W. Wang, S.J. Metcalf, R.E. Critoph, R. Thorpe, Z. Tamainot-Telto, Carbon N. Y. 50, 977–986 (2012)

    Google Scholar 

  113. L.W. Wang, R.Z. Wang, Z.S. Lu, C.J. Chen, K. Wang, J.Y. Wu, Carbon 44, 2671–2680 (2006)

    Google Scholar 

  114. I.I. El-Sharkawy, A. Pal, T. Miyazaki, B.B. Saha, S. Koyama, Appl. Therm. Eng. 98, 1214–1220 (2016)

    Google Scholar 

  115. M. Tatlıer, A. Erdem-Şenatalar, Microporous Mesoporous Mater. 28, 195–203 (1999)

    Google Scholar 

  116. F. Russo, G. Restuccia, L. Bonaccorsi, A. Freni, E. Proverbio, Microporous Mesoporous Mater. 91, 7–14 (2005)

    Google Scholar 

  117. A. Freni, A. Frazzica, B. Dawoud, S. Chmielewski, L. Calabrese, L. Bonaccorsi, Appl. Therm. Eng. 50, 1658–1663 (2013)

    Google Scholar 

  118. H. Kummer, G. Füldner, S.K. Henninger, Appl. Therm. Eng. 85, 1–8 (2015)

    Google Scholar 

  119. A. Pal, M.S.R. Shahrom, M. Moniruzzaman, C.D. Wilfred, S. Mitra, K. Thu, B.B. Saha, Chem. Eng. J. 326, 980–986 (2017)

    Google Scholar 

  120. Wolf, J. Stefan, Layer composite and production thereof, Patent WO 2007017015 A3, 2007

  121. J.J. Guilleminot, A. Choisier, J.B. Chalfen, S. Nicolas, J.L. Reymoney, Heat Recover. Syst. CHP. 13, 297–300 (1993)

    Google Scholar 

  122. M. Tatlier, Appl. Therm. Eng. 113, 290–297 (2017)

    Google Scholar 

  123. A. Li, K. Thu, A.B. Ismail, M.W. Shahzad, K.C. Ng, Int. J. Heat Mass Transf. 92, 149–157 (2016)

    Google Scholar 

  124. L. Bonaccorsi, A. Caprì, V. Brancato, A. Freni, L. Calabrese, E. Proverbio, A. Frazzica, Appl. Therm. Eng. 116, 364–371 (2017)

    Google Scholar 

  125. H. Zhang, W.J. Suszynski, K.V. Agrawal, M. Tsapatsis, S. Al Hashimi, L.F. Francis, Ind. Eng. Chem. Res. 51, 9250–9259 (2012)

    Google Scholar 

  126. M. Tatlier, G. Munz, G. Fueldner, S.K. Henninger, Microporous Mesoporous Mater. 193, 115–121 (2014)

    Google Scholar 

  127. L. Bonaccorsi, E. Proverbio, Microporous Mesoporous Mater. 74, 221–229 (2004)

    Google Scholar 

  128. L. Schnabel, M. Tatlier, F. Schmidt, A. Erdem-Şenatalar, Appl. Therm. Eng. 30, 1409–1416 (2010)

    Google Scholar 

  129. M. Tatlıer, A. Erdem-Şenatalar, Int. J. Refrig 23, 260–268 (2000)

    Google Scholar 

  130. L. Bonaccorsi, L. Calabrese, A. Freni, E. Proverbio, G. Restuccia, Appl. Therm. Eng. 50, 1590–1595 (2013)

    Google Scholar 

  131. K. Thu, Y.-D. Kim, A.B. Ismail, K.C. Ng, Appl. Therm. Eng. 72, 200–205 (2014)

    Google Scholar 

  132. V. Brancato, A. Frazzica, A. Sapienza, L. Gordeeva, A. Freni, Energy. 84, 177–185 (2015)

    Google Scholar 

  133. W.S. Loh, A. Bin Ismail, B. Xi, K.C. Ng, W.G. Chun, J. Chem. Eng. Data. 57, 2766–2773 (2012)

    Google Scholar 

  134. S. Kayal, A. Chakraborty, H.W.B. Teo, Mater. Lett. 221, 165–167 (2018)

    Google Scholar 

  135. M.G. Frère, G.F. De Weireld, J. Chem. Eng. Data 47, 823–829 (2002)

    Google Scholar 

  136. G. Horvath, K. Kawazoe, J. Chem. Eng. Japan. 16, 470–475 (1983)

    Google Scholar 

  137. H.T. Chua, K.C. Ng, A. Chakraborty, N.M. Oo, M.A. Othman, J. Chem. Eng. Data 47, 1177–1181 (2002)

    Google Scholar 

  138. K.C. Ng, H.T. Chua, C.Y. Chung, C.H. Loke, T. Kashiwagi, A. Akisawa, B.B. Saha, Appl. Therm. Eng. 21, 1631–1642 (2001)

    Google Scholar 

  139. L. Gordeeva, A. Frazzica, A. Sapienza, Y. Aristov, A. Freni, Energy. 75, 390–399 (2014)

    Google Scholar 

  140. A. Pal, H.-S. Kil, S. Mitra, K. Thu, B.B. Saha, S.-H. Yoon, J. Miyawaki, T. Miyazaki, S. Koyama, Appl. Therm. Eng. 122, 389–397 (2017)

    Google Scholar 

  141. I.I. El-Sharkawy, K. Uddin, T. Miyazaki, B.B. Saha, S. Koyama, J. Miyawaki, S.-H. Yoon, Int. J. Heat Mass Transf. 73, 445–455 (2014)

    Google Scholar 

  142. L. Gordeeva, Y. Aristov, Appl. Energy 117, 127–133 (2014)

    Google Scholar 

  143. A.A. Askalany, B.B. Saha, K. Uddin, T. Miyzaki, S. Koyama, K. Srinivasan, I.M. Ismail, J. Chem. Eng. Data 58, 2828–2834 (2013)

    Google Scholar 

  144. L. Zhou, Y. Zhou, M. Li, P. Chen, Y. Wang, Langmuir 16, 5955–5959 (2000)

    Google Scholar 

  145. S. Himeno, T. Komatsu, S. Fujita, J. Chem. Eng. Data 50, 369–376 (2005)

    Google Scholar 

  146. I.I. El-Sharkawy, K. Kuwahara, B.B. Saha, S. Koyama, K.C. Ng, Appl. Therm. Eng. 26, 859–865 (2006)

    Google Scholar 

  147. M. Ghazy, A.A. Askalany, K. Harby, M.S. Ahmed, Appl. Therm. Eng. 105, 639–645 (2016)

    Google Scholar 

  148. J.W. Wu, S.H. Madani, M.J. Biggs, P. Phillip, C. Lei, E.J. Hu, J. Chem. Eng. Data 60, 1727–1731 (2015)

    Google Scholar 

  149. V.K. Singh, E.A. Kumar, Int. J. Refrig 84, 238–252 (2017)

    Google Scholar 

  150. V.K. Singh, E.A. Kumar, J. CO2 Util. 17, 290–304 (2017)

    Google Scholar 

  151. H.W.B. Teo, A. Chakraborty, W. Fan, Microporous Mesoporous Mater. 242, 109–117 (2017)

    Google Scholar 

  152. Ş.Ç. Sayilgan, M. Mobedi, S. Ülkü, Microporous Mesoporous Mater. 224, 9–16 (2016)

    Google Scholar 

  153. S. Kayal, A. Chakraborty, Chem. Eng. J. 334, 780–788 (2018)

    Google Scholar 

  154. H.W.B. Teo, A. Chakraborty, I.O.P. Conf, Ser. Mater. Sci. Eng. 272, 012019 (2017)

    Google Scholar 

  155. D. Saha, Z. Wei, S. Deng, Int. J. Hydrogen Energy 33, 7479–7488 (2008)

    Google Scholar 

  156. I.I. El-Sharkawy, B.B. Saha, S. Koyama, J. He, K.C. Ng, C. Yap, Int. J. Refrig 31, 1407–1413 (2008)

    Google Scholar 

  157. B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, S.-H. Yoon, K.C. Ng, J. Chem. Eng. Data 51, 1587–1592 (2006)

    Google Scholar 

  158. B. Dawoud, U. Vedder, E.H. Amer, S. Dunne, Int. J. Heat Mass Transf. 50, 2190–2199 (2007)

    Google Scholar 

  159. P. Grenier, J.J. Guilleminot, F. Meunier, M. Pons, J. Sol. Energy Eng. 110, 192 (1988)

    Google Scholar 

  160. M. Pons, J.J. Guilleminot, J. Sol. Energy Eng. 108, 332 (1986)

    Google Scholar 

  161. M.M. Dubinin, Physical adsorption of gases and vapors in micropores. In: Prog. Surf. Membr. Sci., Elsevier, 1975: pp. 1–70

  162. B.B. Saha, S. Jribi, S. Koyama, I.I. E-Sharkawy, J. Chem. Eng. Data. 56, 1974–1981 (2011)

    Google Scholar 

  163. K.A.G. Amankwah, J.A. Schwarz, Carbon N. Y. 33, 1313–1319 (1995)

    Google Scholar 

  164. B. Tian, Z.Q. Jin, L.W. Wang, R.Z. Wang, Int. J. Heat Mass Transf. 55, 4453–4459 (2012)

    Google Scholar 

  165. L.W. Wang, S.J. Metcalf, R.E. Critoph, R. Thorpe, Z. Tamainot-Telto, Carbon N. Y. 49, 4812–4819 (2011)

    Google Scholar 

  166. E. Daguerre, V. Goetz, X. Py, B. Spinner, Composite material comprising activated carbon and expanded graphite, US Patent EP1252121B1, 2001

  167. A. Sharafian, K. Fayazmanesh, C. McCague, M. Bahrami, Int. J. Heat Mass Transf. 79, 64–71 (2014)

    Google Scholar 

  168. İ. Solmuş, C. Yamalı, B. Kaftanoğlu, D. Baker, A. Çağlar, Appl. Energy 87, 2062–2067 (2010)

    Google Scholar 

  169. T.H. Eun, H.K. Song, J. Hun Han, K.H. Lee, J.N. Kim, Int. J. Refrig. 23, 64–73 (2000)

    Google Scholar 

  170. T. Eun, H. Song, J. Hun Han, K. Lee, J. Kim, Int. J. Refrig. 23, 64–73 (2000)

    Google Scholar 

  171. B. Marchon, J. Carrazza, H. Heinemann, G.A. Somorjai, Carbon N. Y. 26, 507–514 (1988)

    Google Scholar 

  172. C.R. Hall, R.J. Holmes, Carbon N. Y. 306223, 173–17692 (1992)

    Google Scholar 

  173. Z.-M. Wang, K. Kaneko, J. Phys. Chem. B. 102, 2863–2868 (2002)

    Google Scholar 

  174. S. Furmaniak, A.P. Terzyk, P.A. Gauden, P. Kowalczyk, G.S. Szymański, Chem. Phys. Lett. 578, 85–91 (2013)

    Google Scholar 

  175. S. Kwon, R. Vidic, E. Borguet, Surf. Sci. 522, 17–26 (2003)

    Google Scholar 

  176. H.-S. Kil, T. Kim, K. Hata, K. Ideta, T. Ohba, H. Kanoh, I. Mochida, S.-H. Yoon, J. Miyawaki, Appl. Therm. Eng. 72, 160–165 (2014)

    Google Scholar 

  177. Z. ALOthman, Materials 5, 2874–2902 (2012)

    Google Scholar 

  178. J.S. Beck, D.C. Calabro, S.B. McCullen, B.P. Pelrine, K.D. Schmitt, all N. Of, J.C. Vartuli, W. Chester, Method for Functionalizing Synthetic Mesoporous Crystalline Material, US patent 5,145,816, 1992

  179. Y. Shinoda, S. Inagaki, T. Hayashi, N. Tokunaga, T. Nakamura, K. Aoki, T. Shimada, J. Am. Chem. Soc. 125, 4688–4689 (2003)

    Google Scholar 

  180. H. Wang, J. Kang, H. Liu, J. Qu, J. Environ. Sci. 21, 1473–1479 (2009)

    Google Scholar 

  181. J.M. Choi, D. Jeong, E. Cho, B.-H. Jun, S. Park, J.-H. Yu, M. Nazir Tahir, S. Jung, J. Ind. Eng. Chem. 35, 376–382 (2016)

    Google Scholar 

  182. S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283, 1148–1150 (1999)

    Google Scholar 

  183. K. Uddin, I.I. El-sharkawy, T. Miyazaki, Evergreen, Jt. J. Nov. Carbon Resour. Sci. Green Asia Strategy. 1, 25–31 (2014)

  184. W.S. Loh, I.I. El-Sharkawy, K.C. Ng, B.B. Saha, Appl. Therm. Eng. 29, 793–798 (2009)

    Google Scholar 

  185. P. Goyal, P. Baredar, A. Mittal, A.R. Siddiqui, Renew. Sustain. Energy Rev. 53, 1389–1410 (2016)

    Google Scholar 

  186. M.Z.I. Khan, K.C.A. Alam, B.B. Saha, A. Akisawa, T. Kashiwagi, Appl. Therm. Eng. 27, 1677–1685 (2007)

    Google Scholar 

  187. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Ind. Eng. Chem. Res. 53, 2498–2508 (2014)

    Google Scholar 

  188. A. Rezk, R. AL-Dadah, S. Mahmoud, A. Elsayed, Appl. Energy. 112, 1025–1031 (2013)

    Google Scholar 

  189. E. Ivanova, M. Karsheva, Sep. Purif. Technol. 73, 429–431 (2010)

    Google Scholar 

  190. S.K. Henninger, M. Schicktanz, P.P.C. Hügenell, H. Sievers, H.-M. Henning, Int. J. Refrig 35, 543–553 (2012)

    Google Scholar 

  191. B.B. Saha, I.I. El-Sharkawy, R. Thorpe, R.E. Critoph, Int. J. Refrig 35, 499–505 (2012)

    Google Scholar 

  192. M. Ghazy, K. Harby, A.A. Askalany, B.B. Saha, Int. J. Refrig 70, 196–205 (2016)

    Google Scholar 

  193. A.A. Askalany, B.B. Saha, I.M. Ismail, Appl. Therm. Eng. 72, 237–243 (2014)

    Google Scholar 

  194. M.M. El-Sharkawy, A.A. Askalany, K. Harby, M.S. Ahmed, Appl. Therm. Eng. 93, 988–994 (2016)

    Google Scholar 

  195. S. Jribi, T. Miyazaki, B.B. Saha, A. Pal, M.M. Younes, S. Koyama, A. Maalej, Int. J. Heat Mass Transf. 108, 1941–1946 (2017)

    Google Scholar 

  196. A. Pal, I.I. El-Sharkawy, B.B. Saha, S. Jribi, T. Miyazaki, S. Koyama, Appl. Therm. Eng. 109, 304–311 (2016)

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Baran Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B.B., Uddin, K., Pal, A. et al. Emerging sorption pairs for heat pump applications: an overview. JMST Adv. 1, 161–180 (2019). https://doi.org/10.1007/s42791-019-0010-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-019-0010-4

Keywords

Navigation