Skip to main content
Log in

Fast Fourier transform solver for damage modeling of composite materials

  • Letter
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

In the case of highly heterogeneous microstructures, such as textile composites herein, conformal FE meshes are difficult to generate for image-based modeling. As an alternative way regular meshing based on the initial image discretization can be used. However, it requires a large number of elements to reduce undesirable effects due to the voxelized discretization of the phase, such as so-called checkerboard pattern. In this work FAST Fourier transform (FFT) based method has been employed by virtue of its simplicity of meshing and efficiency of parallel computation. One of the major contributions is the extension of the FFT method to nonlinear material modeling based on continuous damage mechanics (CDM). Simple test cases are provided to validate the model. In the last part, the FFT with CDM modeling is applied to a real mesostructure of 3D interlock composite from X-ray computed tomography image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  2. V.R. Coffman, A.C.E. Reid, S.A. Langer, G. Dogan, OOF3D: an image-based finite element solver for materials science. Math. Comput. Simul. 82, 2951–2961 (2012)

    Article  MathSciNet  Google Scholar 

  3. G. Legrain, P. Cartraud, I. Perreard, N. Moes, An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int. J. Numer. Methods Eng. 86, 915–934 (2011)

    Article  MATH  Google Scholar 

  4. Y. Liu, I. Straumit, D. Vasiukov, S.V. Lomov, S. Panier, Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography. Compos. Struct. 179, 568–579 (2017)

    Article  Google Scholar 

  5. A. Doitrand, C. Fagiano, F.X. Irisarri, M. Hirsekorn, Comparison between voxel and consistent meso-scale models of woven composites. Compos. A Appl. Sci. Manuf. 73, 143–154 (2015)

    Article  Google Scholar 

  6. H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Brisard, L. Dormieux, FFT-based methods for the mechanics of composites: a general variational framework. Comput. Mater. Sci. 49, 663–671 (2010)

    Article  Google Scholar 

  8. L. Gélébart, R. Mondon-Cancel, Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput. Mater. Sci. 77, 430–439 (2013)

    Article  Google Scholar 

  9. J. Zeman, T.W.J. de Geus, J. Vondřejc, R.H.J. Peerlings, M.G.D. Geers, A finite element perspective on nonlinear FFT-based micromechanical simulations. Int. J. Numer. Methods Eng. 111, 903–926 (2017)

    Article  MathSciNet  Google Scholar 

  10. M. Schneider, D. Merkert, M. Kabel, FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int. J. Numer. Methods Eng. 109, 1461–1489 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Li, S. Meng, X. Tian, F. Song, C. Jiang, A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Compos. B Eng. 43, 961–971 (2012)

    Article  Google Scholar 

  12. B. Wang, G. Fang, S. Liu, M. Fu, J. Liang, Progressive damage analysis of 3D braided composites using FFT-based method. Compos. Struct. 192, 255–263 (2018)

    Article  Google Scholar 

  13. Home AMITEX_FFTP 2.3 documentation http://www.maisondelasimulation.fr/projects/amitex/html/. Accessed 1 Jan 2019

  14. Cast3M http://www-cast3m.cea.fr/. Accessed 1 Jan 2019

  15. F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields. C. R. Mec 343, 232–245 (2015)

    Article  Google Scholar 

  16. B. Rosen, Mechanics of composite strengthening, Fiber composite materials (ACM, Metals Park, 1964)

    Google Scholar 

  17. C. Chamis, Mechanics of composite materials: past, present, and future. J. Compos. Technol. Res. 11, 3–14 (1989). https://doi.org/10.1520/CTR10143J

    Article  Google Scholar 

  18. D. Ashouri Vajari, C. González, J. Llorca, B.N. Legarth, A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites. Compos. Sci. Technol. 97, 46–54 (2014)

    Article  Google Scholar 

  19. F. Naya, C. González, C.S. Lopes, S. Van der Veen, F. Pons, Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. A Appl. Sci. Manuf. 92, 146–157 (2017)

    Article  Google Scholar 

  20. Z.P. Bazant, B.H. Oh, Crack band theory for fracture of concrete. Matériaux Constr. 16, 155–177 (1983)

    Article  Google Scholar 

  21. I. Straumit, S.V. Lomov, M. Wevers, Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Compos. A Appl. Sci. Manuf. 69, 150–158 (2015)

    Article  Google Scholar 

  22. Y. Chen, L. Gélébart, C. Chateau, M. Bornert, C. Sauder, A. King, Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchronoton X-ray micro-tomography. Int. J. Solids Struct. 161, 111–126 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The Nord-Pas-de-Calais Region and the European Community (FEDER funds) partly funds the X-ray tomography equipment ISIS4D platform (LML/LaMcube, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Hae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Vasiukov, D., Gélébart, L. et al. Fast Fourier transform solver for damage modeling of composite materials. JMST Adv. 1, 49–55 (2019). https://doi.org/10.1007/s42791-019-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-019-0004-2

Keywords

Navigation