Antimicrobial effect of gold nanoparticles in the formation of the Staphylococcus aureus biofilm on a polyethylene surface


The main of this study was to evaluate the inhibitory effect on the in vitro formation of the Staphylococcus aureus biofilm formed on a polyethylene (PE) surface with a nanostructured Gold (Au) coating for medical devices. An experimental in vitro study was carried out using PE discs with an Au nanoparticle coating (AuNPs) on one side (experimental group) and without coating on the other (control group); the discs were mounted in the CDC biofilm reactor adding broth of yeast-dextrose-peptone (YPD) sterile culture inoculated with S. aureus in a cell suspension (5 × 108 cells/ml). The specimens were evaluated at different times (6, 12, 24, 48, 72 h) and stained with the Live/Dead Bacterial Viability Kit (Invitrogen) for observation, analysis, and quantification with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that as evaluation time passed an increasing of S. aureus biofilm formation was observed in the control group, in the experimental group, a statistically significant biofilm inhibition was observed with respect to the AuNPs uncoated specimens (p ≤ 0.05) and showed a ratio of almost 4:1 viable/nonviable in the biofilm of the uncoated surfaces, with a difference > 5 Log10 in the CFU counts. The PE with AuNP coating showed an inhibitory effect on the biofilm formation of S. aureus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Houacine C, Yousaf SS, Khan I, Khurana RK, Singh KK (2018) Potential of natural biomaterials in nano-scale drug delivery. Curr Pharm Des 24(43):5188–5206.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jarząb N, Walczak M, Smoliński D, Sionkowska A (2019) The impact of medicinal brines on microbial biofilm formation on inhalation equipment surfaces. Biofouling 34(9):963–975.

    CAS  Article  Google Scholar 

  3. 3.

    Hempel JM (2015) Single-stage ear reconstruction and hearing restoration using polyethylene implant and implantable hearing devices. Facial Plast Surg 31(6):604–610.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Capek I (2017) Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interf Sci 249:386–399.

    CAS  Article  Google Scholar 

  5. 5.

    Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 26(3):143–151.

    CAS  Article  Google Scholar 

  6. 6.

    Ahiwale SS, Bankar AV, Tagunde SBP, Kapadnis (2017) A bacteriophage mediated gold nanoparticles synthesis and their antibiofilm activity. Indian J Microbiol 57(2):188–194.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren KF, Ji J (2017) Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm. ACS Nano 11(9):9330–9339.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM (2015) Statistical assessment of a laboratory method for growing biofilms. Microbiology 151(Pt 3):757–762.

    CAS  Article  Google Scholar 

  11. 11.

    Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(Pt 4):323–334.

    Article  PubMed  Google Scholar 

  12. 12.

    Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104(3):365–376.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kennedy CA, O’Gara JP (2004) Contribution of culture media and chemical properties of polystyrene tissue culture plates to biofilm development by Staphylococcus aureus. J Med Microbiol 53(Pt 11):1171–1173.

    Article  PubMed  Google Scholar 

  14. 14.

    Priya MRK, Lyer PR (2015) Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines. Appl Nanosci 5:443–448.

    CAS  Article  Google Scholar 

  15. 15.

    Rai A, Prabhune A, Perry AA (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798.

    CAS  Article  Google Scholar 

  16. 16.

    Prabhawathiac V, Malliappan PS, Boobalana T, Manohara CM, Doblea M (2019) Design of antimicrobial polycaprolactam nanocomposite by immobilizing T subtilisin conjugated Au/Ag core-shell nanoparticles for biomedical applications. Mater Sci Eng C Mater Biol Appl 94:656–665.

    CAS  Article  Google Scholar 

  17. 17.

    Lu B, Lu F, Ran L, Yu K, Xiao Y, Li Z, Dai F, Wu D, Lan G (2018) Imidazole-molecule-capped chitosan-gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J Colloid Interface Sci 531:269–281.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK, Subbiahdoss G (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. SRN Microbiol 25:272086.

    Article  Google Scholar 

  19. 19.

    Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W (2015) Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive Staphylococci. Small 11(26):3183–3193.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Xie Y, Liu Y, Yang J (2018) Gold nanoclusters for targeting MRSA in vivo. Angew Chem Int Ed Eng 57(15):3958–3962.

    CAS  Article  Google Scholar 

  23. 23.

    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41(12):1578–1586.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Yougbare S, Chang TK, Tan SH, Kuo JC, Hsu PH, Su CY et al (2019) Antimicrobial gold nanoclusters: recent developments and future perspectives. Int J Mol Sci 20(12):2924.

    CAS  Article  PubMed Central  Google Scholar 

  25. 25.

    Lomelí-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A et al (2019) Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomedicine 14:2171–2190.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Peña-González CE, Pedziwiatr-Werbicka E, Martín-Pérez T, Szewczyk EM, Copa-Patiño JL et al (2017) Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. Int J Pharm 528(1-2):55–61.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bing W, Sun H, Wang F, Song Y, Ren J (2018) Hydrogen-producing hyperthermophilic bacteria synthesized size-controllable fine gold nanoparticles with excellence for eradicating biofilm and antibacterial applications. J Mater Chem B 6(28):4602–4609.

    CAS  Article  PubMed  Google Scholar 

Download references


Marco Antonio Álvarez-Pérez want to thanks to the financial support by the Dirección General de Personal Academico-Universidad Nacional Autonoma de Mexico: PAPIIT IT203618 project.

Author information




Contributions to the manuscript were as follows: Lorena Dafnee Villa-García: conceptualization, methodology, data curation. Raúl Márquez-Preciado, Olga Araceli Patrón-Soberano, and Amaury Pozos-Guillén: supervision, conceptualization, data curation. Marco Antonio Álvarez-Pérez, Marine Ortiz-Magdaleno, and Luis Octavio Sánchez-Vargas: writing (original) and final draft preparation, approved the version to be published.

Corresponding author

Correspondence to Luis Octavio Sánchez-Vargas.

Ethics declarations

Conflicts of interest/competing interests

All the authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Fernando R. Pavan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villa-García, L.D., Márquez-Preciado, R., Ortiz-Magdaleno, M. et al. Antimicrobial effect of gold nanoparticles in the formation of the Staphylococcus aureus biofilm on a polyethylene surface. Braz J Microbiol 52, 619–625 (2021).

Download citation


  • Polyethylene,
  • Biofilm,
  • Staphylococcus aureus,
  • Gold nanoparticles,
  • Biofilm reactor