Rapid and reversible cell volume changes in response to osmotic stress in yeast

Abstract

Saccharomyces cerevisiae has evolved diverse mechanisms to osmotic changes: the cell wall, ion and water transport systems, and signaling cascades. At the present time, little is known about the mechanisms involved in short-term responses of osmotic stress in yeast or their physiological state during this process. We conducted studies of flow cytometry, wet weight measurements, and electron microscopy to evaluate the modifications in cell volume and the cell wall induced by osmotic stress. In response to osmotic challenges, we show very fast and drastic changes in cell volume (up to 60%), which were completed in less than eight seconds. This dramatic change was completely reversible approximately 16 s after returning to an isosmotic solution. Cell volume changes were also accompanied by adaptations in yeast metabolism observed as a reduction by 50% in the respiratory rate, measured as oxygen consumption. This effect was also fully reversible upon returning to an isosmotic solution. It is noteworthy that we observed a significant recovery in oxygen consumption during the first 10 min of the osmotic shock. The rapid adjustment of the cellular volume may represent an evolutionary advantage, allowing greater flexibility for survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Conway EJ, Armstrong WM (1961) The total intracellular concentration of solutes in yeast and other plant cells and the distensibility of the plant-cell wall. Biochem J 81(3):631–639. https://doi.org/10.1042/bj0810631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Martínez de Marañon I, Marechal PA, Gervais P (1996) Passive response of Saccharomyces cerevisiae to osmotic shifts: cell volume variations depending on the physiological state. Biochem Biophys Res Commun 227(2):519–523. https://doi.org/10.1006/bbrc.1996.1539

    Article  PubMed  Google Scholar 

  3. 3.

    Tamás MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472(1):159–165. https://doi.org/10.1016/S0014-5793(00)01445-9

    Article  PubMed  Google Scholar 

  4. 4.

    Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372. https://doi.org/10.1128/MMBR.66.2.300-372.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translation response after hyperosmotic shock. Mol Biol Cell 21(17):3030–3092. https://doi.org/10.1091/mbc.e10-01-0006

    Article  Google Scholar 

  6. 6.

    You T, Ingram P, Jacobsen MD, Cook E, McDonagh A, Thorne T, Lenardon MD, de Moura AP, Romano MC, Thiel M, Stumpf M, Gow NA, Haynes K, Grebogi C, Stark J, Brown AJ (2012) A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi. BMC Res Notes 5:258. https://doi.org/10.1186/1756-0500-5-258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Albertyn J, Hohman S, Thevelein JM, Prior BA (1994b) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135–4144. https://doi.org/10.1128/MCB.14.6.4135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Soveral G, Veiga A, Loureiro-Dias MC, Tanghe A, Van Dijck P, Moura TF (2006) Water channels are important for osmotic adjustments of yeast cells at low temperature. Microbiology 152(Pt 5):1515–1152. https://doi.org/10.1099/mic.0.28679-0

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Gervais P, Martínez de Marañón I, Evrard C, Ferret E, Moundanga S (2003) Cell volume changes during rapid temperature shifts. J Biotechnol 102(3):269–279. https://doi.org/10.1016/S0168-1656(03)00031-2

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ramos J, Haro R, Rodríguez-Navarro A (1990) Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta 1029(2):211–217. https://doi.org/10.1016/0005-2736(90)90156-I

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Vindeløv J, Arneborg N (2002) Saccharomyces cerevisiae and Zygosaccharomyces mellis exhibit different hyperosmotic shock responses. Yeast 19(5):429–439. https://doi.org/10.1002/yea.844

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Latterich M, Watson MD (1993) Evidence for a dual osmoregulatory mechanism in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 191(3):1111–1117. https://doi.org/10.1006/bbrc.1993.1331

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145(Pt 11):3221–3228. https://doi.org/10.1099/00221287-145-11-3221

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Saldaña C, Vázquez-Cuevas F, Garay E, Arellano RO (2005) Epithelium and/or theca are required for ATP-elicited K+ current in follicle-enclosed Xenopus oocytes. J Cell Physiol 202(3):814–821. https://doi.org/10.1002/jcp.20184

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Schatz G, Racker E, Tyler DD, Gonze J, Estabrook RW (1966) Studies of the DPNH-cytochrome b segment of the respiratory chain of baker's yeast. Biochem Biophys Res Commun 22(5):585–590. https://doi.org/10.1016/0006-291X(66)90315-9

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Martínez-Muñoz GA, Peña A (2005) In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae. Yeast 22(9):689–704. https://doi.org/10.1002/yea.1238

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    González-Hernández JC, Cárdenas-Monroy CA, Peña A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21(5):403–412. https://doi.org/10.1002/yea.1108

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Saldaña C, Naranjo D, Coria R, Peña A, Vaca L (2002) Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties. J Biol Chem 277(7):4797–4805. https://doi.org/10.1074/jbc.M107957200

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Armstrong WM, Rothstein A (1964) Discrimination between alkali metal cations by yeast. I. Effect of pH on uptake. J Gen Physiol 48(1):61–71. https://doi.org/10.1085/jgp.48.1.61

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63(1):230–262. https://doi.org/10.1128/MMBR.63.1.230-261.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Jakab M, Fürst J, Gschwentner M, Bottà G, Garavaglia ML, Bazzini C, Rodighiero S, Meyer G, Eichmueller S, Wöll E, Chwatal S, Ritter M, Paulmichl M (2002) Mechanisms sensing and modulating signals arising from cell swelling. Cell Physiol Biochem 12(5–6):235–258. https://doi.org/10.1159/000067895

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Vázquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodríguez-González M, de Nadal E, Posas F, Coria R (2018) Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. FEBS J 285(6):1079–1096. https://doi.org/10.1111/febs.14385

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Baltanás R, Bush A, Couto A, Durrieu L, Hohmann S, Colman-Lerner A (2013) Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci Signal 6(272):ra26. https://doi.org/10.1126/scisignal.2003312

  24. 24.

    Shiraishi K, Hioki T, Habata A, Yurimoto H, Sakai Y (2018) Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. J Cell Sci 131(1):jcs209114. https://doi.org/10.1242/jcs.209114

  25. 25.

    Correia I, Alonso-Monge R, Pla J. The Hog1 MAP (2017) Kinase promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans. Front Microbiol 7:2133. https://doi.org/10.3389/fmicb.2016.02133

  26. 26.

    Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289–318. https://doi.org/10.1534/genetics.112.140863

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stojanovski K, Ferrar T, Benisty H, Uschner F, Delfago J, Jimenez J, Solé C, de Nadal E, Klioo E, Posas F, Serrano L, Kiel C (2017) Interaction dynamics determine signaling and output pathway responses. Cell Rep 19(1):136–149. https://doi.org/10.1016/j.celrep.2017.03.029

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27(23):2590–2601. https://doi.org/10.1101/gad.229310.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lee J, Levin DE (2019) Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase. Mol Biol Cell 30(17):2134–2140. https://doi.org/10.1091/mbc.E19-04-0228

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chang YL, Tseng SF, Huang YC, Shen ZJ, Hsu PH, Hsieh MH, Yang CW, Tognetti S, Canal B, Subirana L, Wang CW, Chen HT, Lin CY, Posas F, Teng SC (2017) Yeast Cip1 is activated by environmental stress to inhibit Cdk1–G1 cyclins via Mcm1 and Msn2/4. Nat Commun 8(1):56. https://doi.org/10.1038/s41467-017-00080-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Schutt KL, Moseley JB (2017) Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 28(13):1804–1814. https://doi.org/10.1091/mbc.e17-04-0235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    de Nadal E, Posas F (2015) Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 282(17):3275–3285. https://doi.org/10.1111/febs.13323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21(17):3080–3092. https://doi.org/10.1091/mbc.E10-01-0006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zheng YL, Wang SA (2015) Stress tolerance variations in Saccharomyces cerevisiae strains from diverse ecological sources and geographical locations. PLoS One 10(8):e0133889. https://doi.org/10.1371/journal.pone.0133889

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982. https://doi.org/10.1038/nbt1114

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Albertyn J, Hohmann S, Prior BA (1994) Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr Genet 25(1):12–18. https://doi.org/10.1007/BF00712960

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful discussion with Dr. Ataúlfo Martínez-Torres, Dr. Luis Vaca, and Dr. Antonio Peña. Thanks for technical support to Carlos Lozano and the Microscopy Unit (Instituto de Fisiología Celular, UNAM), M. in C. Adriana González-Gallardo (Instituto de Neurobiología, UNAM), Laboratorio Nacional de Visualización Científica Avanzada (LAVIS, UAQ), Estefany Vega Santo and Dr. Marco Sánchez Ramos (Faculty of Natural Science, UAQ). Special thanks for technical and administrative support to Luis Aguilar, Alejandro de León, Carlos Flores, and Jair García (Laboratorio Nacional de Visualización Científica Avanzada, UNAM).

Funding

This research was financed by SEP-CONACyT Ciencia Básica (grant number A1-S-26966 to C.S.), Laboratorios Nacionales CONACyT to C.S., and FONDEC-UAQ 2019 to C.S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Saldaña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Celia Maria de Almeida Soares

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saldaña, C., Villava, C., Ramírez-Villarreal, J. et al. Rapid and reversible cell volume changes in response to osmotic stress in yeast. Braz J Microbiol (2021). https://doi.org/10.1007/s42770-021-00427-0

Download citation

Keywords

  • Yeast
  • Cell volume
  • Osmotic stress