Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms


Bacterial biofilms play a key role in the pathogenesis of major oral diseases. Nanoparticles open new paths for drug delivery in complex structures such as biofilms. This study evaluated the antimicrobial effect of zein nanoparticles containing anacardic acid (AA) extracted from cashew shells of Anacardium occidentale on in vitro Streptococcus mutans biofilm formation and mature biofilms. The minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and antibiofilm assays were performed. Streptococcus mutans UA159 biofilms were formed on saliva-coated hydroxyapatite disk for 5 days. To evaluate the preventive effect on biofilm formation, before contact with the inoculum, the disks were immersed once for 2 min in (1) hydroethanolic solution; (2) blank zein nanoparticles; (3) zein nanoparticles containing AA; and (4) 0.12% chlorhexidine gluconate. To determine the effect against mature biofilms, the disks containing 5-day preformed biofilms were further treated using the same procedure. The bacterial viability and dry weight were determined for both assays and used to compare the groups using ANOVA followed by Tukey’s test (p < 0.05). Both MIC and MBC for AA-loaded zein nanoparticles were 0.36 μg/mL. Groups 3 and 4 were very effective in inhibiting S. mutans biofilm formation, as no colony-forming units were detected. In contrast, for mature biofilms, no difference in bacterial viability (p = 0.28) or dry weight (p = 0.09) was found between the treatments. Therefore, the AA-based nanoformulation presented very high inhibitory and bactericidal activities against planktonic S. mutans, and the results indicate a strong antiplaque effect. However, the formulation showed no antimicrobial effect on the established biofilm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Fejerskov O (2004) Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 38:182–191.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Cury JA, Noronha MS, Romao DA, Tabchoury CP (2016) M. Effect of fluoride concentration on reduction of enamel demineralization according to the cariogenic challenge. Braz Dent J 27(4):393–398.

    Article  PubMed  Google Scholar 

  3. 3.

    Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, Murray CJL (2013) Global burden of oral conditions in 1990-2010: a systematic analysis. J Dent Res 92(7):592–597.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Klein MI, Hwang G, Santos PHS, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 13:5–10.

    CAS  Article  Google Scholar 

  6. 6.

    Oberoi SS, Dhingra C, Sharma G, Sardana D (2015) Antibiotics in dental practice: hoe to justified are we. Int Dent J 65(1):4–10.

    Article  PubMed  Google Scholar 

  7. 7.

    Tartaglia GM, Tadakamadla SK, Connelly ST, Sforza C, Martín C (2019) Adverse events associated with home use of mouthrinses: a systematic review. Ther Adv Drug Saf 10:1–16.

    Article  Google Scholar 

  8. 8.

    Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Amad A (2019) Resistance toward chlorhexidine in oral bacteria – is there cause for concern? Front Microbiol 10:587.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gomes CEB, Cavalcante DG, Girão Filho JE, Costa FN, Pereira SLS (2016) Clinical effect of a mouthwash containing AnacardiumoccidentaleLinn. On plaque and gingivitis control: a randomized controlled trial. Indian J Dent Res 27:364–369.

    Article  PubMed  Google Scholar 

  10. 10.

    Perazzo FF, Silva RS, Carvalho JCT, Groppo FC (2004) Utilización de sustâncias naturalesen Odontologia. J Bras Fitomedicina 2(1–4):9–15

  11. 11.

    Trevisan MTS, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188–197.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Harlita NH, Satuti NHN, Sagi M, Astuti P (2016) Acute toxicity of cashew nut shell extract (Anacardiumoccidentale L.) in albino rat (Rattusnorvegicus Berkenhout 1769). Pak J Biol Sci 19:89–94.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Carvalho ALN, Annoni R, Silva PRP, Borelli P, Fock RA, Trevisan MTS, Mauad T (2011) Acute, subacute toxicity and mutagenic effects of anacardic acids from cashew (Anacardiumoccidentale Linn.) in mice. J Ethnopharmacol 135:730–736.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Souza MQ, Teotonio IMSN, Almeida FC, Heyn GS, Alves PS, Romeiro LAS, Pratesi R, Nobrega YKM, Pratesi CB (2018) Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complement Altern Med 18(1):181.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39:418–421

    CAS  Article  Google Scholar 

  16. 16.

    Muroi H, Kubo I (1993) Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J Agric Food Chem 41:1780–1783

    CAS  Article  Google Scholar 

  17. 17.

    Green IR, Tocoli FE, Lee SH, Nihei KI, Kubo I (2008) Design and evaluation of anacardic acid derivatives as anticavity agents. Eur J Med Chem 43:1315–1320.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Rivero-Cruz BE, Esturau N, Sanchez-Nieto S, Romero I, Castillo-Juarez I, Rivero-Cruz JF (2011) Isolation of the new anacardic acid 6-[16'Z-nonadecenyl]-salicylic acid and evaluation of its antimicrobial activity against Streptococcus mutans and Porphyromonas gingivalis. Nat Prod Res 25(13):1282–1287.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Araújo JSC, Castilho ARF, Lira AB, Pereira AV, Azevedo TKB, Costa EMMB, Pereira MSV, Pessoa HFL, Pereira JV (2018) Antibacterial activity against cariogenic bacteria and cytotoxic and genotoxic potential of Anacardium occidentale L. and Anadenanther amacrocarpa(Benth.) Brenan extracts. Arch Oral Biol 85:113–119.

    Article  PubMed  Google Scholar 

  20. 20.

    Kubo I, Masamitsu O, Vieira PC, Sakae K (1993) Antitumoragentes from the cashew (Anacardium occidentale) apple juice. J Agric Food Chem 41(6):1012–1015

    CAS  Article  Google Scholar 

  21. 21.

    Al-Hazzani A, Periyasamy V, Subash-Babu P, Alshatwi A (2012) Formulation of cashew nut shell liquid (CSNL) nanoemulsion, a potent inhibitor of human MCF-7 breast cancer cell proliferation. Med Chem Res 21:1384–1388

    CAS  Article  Google Scholar 

  22. 22.

    Araújo CRF, Pereira MSV, Higino JS, Pereira JV, Martins AB (2005) In vitro antifungal activity of Anacardiumoccidentalelinn. Bark upon leaves of the Candida gender. Arq Odontol 41(3):193–272

    Google Scholar 

  23. 23.

    Kubo I, Masuoka N, Ha TJ, Tsujimoto K (2006) Antioxidant activity of anacardic acids. Food Chem 99:555–562

    CAS  Article  Google Scholar 

  24. 24.

    Hamad FB, Mubofu EB (2015) Potential biological applications of bio-based anacardic acids and their derivatives. Int J Mol Sci 16:8569–8590.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Green IR, Tocoli FE, Lee SH, Nihei KI, Kubo I (2007) Molecular design of anti-MRSA agents based on the anacardic acid scaffold. Bioorg Med Chem 15:6236–6241.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Morais SM, Silva KA, Araujo H, Vieira IGP, Alves DR, Fontenelle ROS, Silva AMS (2017) Anacardic acid constituents from cashew nut shell liquid: NMR characterization and the effect of unsaturation on its biological activities. Pharmaceuticals 10:1–10.

    Article  Google Scholar 

  27. 27.

    Anand G, Ravinanthan M, Basaviah R, Shetty AV (2015) In vitro antimicrobial and cytotoxic effects of Anacarium occidentale and Mangifera indicain oral care. J Pharm Bioallied Sci 7(1):69–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ahmadian E, Shahi S, Yazdani J, Dizaj SM, Sharifi S (2018) Local treatment of the dental caries using nanomaterials. Biomed Pharmacother 108:443–447.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Sousa CFO, Rodrigues LCA, Nojosa JS, Yamauti M (2014) Nanotechnology in dentistry: drug delivery systems for the control of biofilm-dependent oral diseases. Curr Drug Deliv 11:719–728.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kavoosi F, Modaresi F, Sanaei M, Rezaei Z (2018) Medical and dental applications of nanomedicines. APMIS 126:795–803.

  31. 31.

    Defrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X (2018) Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci 19:1717.

    CAS  Article  PubMed Central  Google Scholar 

  32. 32.

    Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characyerization methods. Mater Sci Eng C Mater Biol Appl 80:771–784.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R (2018) Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol 114:426–433.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev 71:86–97.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sousa FFO, Araújo JTC (2017)Nanopartículas de ácido anacárdico extraído do caju e seu uso como agente bactericida e larvicida. Register number: BR n 10201701193. Universidade Federal do Amapá

  36. 36.

    CLSI (2013) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Third Informational Supplement. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standard Institute

  37. 37.

    Duarte S, Klein MI, Aires CP, Cury JA, Bowen WH, Koo H (2008) Influences of starch and sucrose oh Streptococcus mutans biofilms. Oral Microbiol Immunol 23:206–212.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8(2):263–271.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Arpana MS, Yadav S (2008) Biofilms: microbes and disease. Braz J Infect Dis 12(6):526–530

    Article  Google Scholar 

  41. 41.

    Krzysciak W, Jurezak A, Koscielniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Banas JA, Drake DR (2018) Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health 18(1):129.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pereira MRP, Gamez RT, Freire NR, Aguiar EG, Brandão MGL, Santos VR (2011) In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Planta Med 77:401–404.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Sajeevan SE, Chatterjee M, Paul V, Baranwal G, Kumar VA, Bose C, Banerji A, Nair BG, Prasanth BP, Biswas R (2018) Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol 125(5):1286–1295.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Aligiannis N, Kalpotzakis E, Mitaku S, Chinou IB (2001) Composition and antimicrobial activity of the essential oils or two Origanum species. J Agric Food Chem 40:4168–4170

    Article  Google Scholar 

  46. 46.

    Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P (2018) The use of nanoparticles as biomaterials in dentistry. Drug Discov Today 00:1–14.

    CAS  Article  Google Scholar 

  47. 47.

    Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wang H, Ren D Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express 7(204):1–9.

  49. 49.

    Re ANS, Bonjovanni MC, Ferreira MP, Freitas O, Aires CP (2019) Effect of an experimental formulation containing chlorhexidine on pathogenic biofilms and drug release behavior in the presence or absence of bacteria. Pharmaceutics 11(2):E88.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Da Silveira Vasconcelos M, Gomes-Rochette NF, de Oliveira ML, Nunes-Pinheiro DC, Tomé AR, Maia de Sousa FY, De Melo DF (2015) Anti-inflammatory and wound healing potential of cashew apple juice (Anacardium occidentale L.) in mice. Exp Biol Med (Maywood) 240(12):1648–1655.

    CAS  Article  Google Scholar 

  51. 51.

    Barbosa-Filho VM, Waczuk EP, Leite NF, Menezes IR, Da Costa JG, Lacerda SR, Adedara IA, Coutinho HD, Posser T, Kamdem JP (2015) Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections. Drug Des Devel Ther 9:5965–5972.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Baptista A, Gonçalves RV, Bressan J, Pelúzio MCG (2018) Antioxidant and antimicrobial activities of crude extracts and fractions of cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and Pequi (Caryocar brasiliense C.): a systematic review. Oxidative Med Cell Longev 2018:3753562.

    CAS  Article  Google Scholar 

  53. 53.

    Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin H-L (2018) Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog 123:339–347

    CAS  Article  Google Scholar 

  54. 54.

    Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR III, Heydorn A, Koo H (2012) The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 8(4):e1002623.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank the Federal University of Ceará (Fortaleza, Brazil) for the infrastructure used in this research. Sousa, FFO thank FAPEAP/CNPq for the financial support.

Author information




All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Smyrna Luiza Ximenes de Souza, Lais Aragão Lima, Ana Larissa Ximenes Batista, Jennifer Thayanne Cavalcante de Araújo, Francisco Fábio Oliveira Sousa, Ramille Araújo Lima, and Juliana Paiva Marques Lima Rolim. The first draft of the manuscript was written by Tereza De Jesus Pinheiro Gomes Bandeira, Ramille Araújo Lima, Smyrna Luiza Ximenes de Souza, and Juliana Paiva Marques Lima Rolim and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliana Paiva Marques Lima Rolim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial Responsibility: Luis Henrique Souza Guimaraes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima, R.A., de Souza, S.L.X., Lima, L.A. et al. Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol (2020).

Download citation


  • Anacardium occidentale
  • Streptococcus mutans
  • Biofilm
  • Nanoparticles