In vitro antifungal susceptibility of Sporothrix globosa isolates from Jilin Province, northeastern China: comparison of yeast and mycelial phases

Abstract

The dimorphic fungus Sporothrix globosa is the predominant etiologic agent causing sporotrichosis in China, particularly in the northeast. It has been demonstrated that the incubation temperature and growth phase can influence in vitro antifungal susceptibility profiles of S. schenckii sensu stricto and S. brasiliensis (sibling species of S. globosa). Few studies have reported on the antifungal susceptibility of S. globosa, especially using large numbers of isolates. In this study, we assessed the susceptibility of 80 isolates of S. globosa originating from Jilin Province, northeastern China, to six antifungal agents (itraconazole, terbinafine, voriconazole, posaconazole, fluconazole, and amphotericin B), at varying incubation temperatures and in different fungal growth phases. The isolates were most sensitive to terbinafine (geometric mean [GM] of the minimum inhibitory concentration [MIC]: 0.0356 μg/ml for the mycelial phase at 30 °C, 0.0332 μg/ml for the mycelial phase at 35 °C, and 0.031 μg/ml for the yeast phase, respectively), followed by posaconazole (GM of the MIC: 4.2501 μg/ml for the mycelial phase at 30 °C, 1.4142 μg/ml for the mycelial phase at 35 °C, and 0.7195 μg/ml for the yeast phase, respectively) and itraconazole (GM of the MIC: 6.8448 μg/ml for the mycelial phase at 30 °C, 3.1383 μg/ml for the mycelial phase at 35 °C, and 1.0263 μg/ml for the yeast phase, respectively). The isolates were relatively resistant to fluconazole (GM of the MIC: 76.7716 μg/ml for the mycelial phase at 30 °C, 66.2570 μg/ml for the mycelial phase at 35 °C, and 24.4625 μg/ml for the yeast phase, respectively) and voriconazole (GM of the MIC: 26.2183 μg/ml for the mycelial phase at 30 °C, 13.6895 μg/ml for the mycelial phase at 35 °C, and 1.3899 μg/ml for the yeast phase, respectively). For all the tested azole drugs, the MICs at 30 °C were significantly higher than those at 35 °C (P < 0.001); for all agents except terbinafine, the MICs of S. globosa in the yeast phase were significantly lower than those of the strains in the mycelial phase (P < 0.001). These results show that the sensitivities of S. globosa to antifungal compounds are dependent on incubation temperature and growth phase. To the best of our knowledge, this is the largest study of antifungal susceptibility of S. globosa isolates reported to date. To establish epidemiological cutoff values for S. globosa, further antifungal susceptibility testing studies by independent laboratories located in different regions and using uniform conditions are required.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    de Beer ZW, Duong TA, Wingfield MJ (2016) The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol 83:165–191. https://doi.org/10.1016/j.simyco.2016.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rodrigues AM, de Hoog GS, de Camargo ZP (2015) Molecular diagnosis of pathogenic Sporothrix species. PLoS Negl Trop Dis 9(12):e4190. https://doi.org/10.1371/journal.pntd.0004190

    CAS  Article  Google Scholar 

  3. 3.

    Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S (2015) Global epidemiology of sporotrichosis. Med Mycol 53(1):3–14. https://doi.org/10.1093/mmy/myu062

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mahmoudi S, Zaini F, Kordbacheh P, Safara M, Heidari M (2016) Sporothrix schenckii complex in Iran: molecular identification and antifungal susceptibility. Med Mycol 54(6):593–599. https://doi.org/10.1093/mmy/myw006

    Article  PubMed  Google Scholar 

  5. 5.

    Rasamoelina T, Maubon D, Raharolahy O, Razanakoto H, Rakotozandrindrainy N, Rakotomalala FA, Bailly S, Sendrasoa F, Ranaivo I, Andrianarison M, Rakotonirina B, Andriantsimahavandy A, Rabenja FR, Andrianarivelo MR, Ramarozatovo LS, Cornet M (2019) Sporotrichosis in the Highlands of Madagascar, 2013-2017(1). Emerg Infect Dis 25(10):1893–1902. https://doi.org/10.3201/eid2510.190700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yao L, Song Y, Zhou JF, Cui Y, Li SS (2020) Epidemiological and clinical comparisons of paediatric and adult sporotrichosis in Jilin Province, China. Mycoses 63(3):308–313. https://doi.org/10.1111/myc.13045

    Article  PubMed  Google Scholar 

  7. 7.

    Zhao L, Cui Y, Zhen Y, Yao L, Shi Y, Song Y, Chen R, Li S (2017) Genetic variation of Sporothrix globosa isolates from diverse geographic and clinical origins in China. Emerg Microbes Infec 6(10):e13–e88. https://doi.org/10.1038/emi.2017.75

    Article  Google Scholar 

  8. 8.

    Fischman GO, Rodrigues AM, Fernandes GF et al (2016) Atypical clinical presentation of Sporotrichosis caused by Sporothrix globosa resistant to Itraconazole. Am J Trop Med Hyg 94(6):1218–1222. https://doi.org/10.4269/ajtmh.15-0267

    CAS  Article  Google Scholar 

  9. 9.

    CLSI Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. CLSI standard M38. Wayne, PA: Clinical and Laboratory Standards Institute; 2017

  10. 10.

    Almeida-Paes R, de Oliveira LC, Oliveira MME, Gutierrez-Galhardo MC, Nosanchuk JD, Zancopé-Oliveira RM (2015) Phenotypic characteristics associated with virulence of clinical isolates from the Sporothrix complex. Biomed Res Int 2015:212308–212310. https://doi.org/10.1155/2015/212308

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Sanchotene KO, Brandolt TM, Klafke GB, Poester VR, Xavier MO (2017) In vitro susceptibility of Sporothrix brasiliensis: comparison of yeast and mycelial phases. Med Mycol 55(8):869–876. https://doi.org/10.1093/mmy/myw143

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Trilles L, Fernandez-Torres B, Dos SLM et al (2005) In vitro antifungal susceptibilities of Sporothrix schenckii in two growth phases. Antimicrob Agents Chemother 49(9):3952–3954. https://doi.org/10.1128/AAC.49.9.3952-3954.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    CLSI Reference method for broth dilution antifungal susceptibility testing of yeasts. 4th ed. CLSI standard M27. Wayne, PA: Clinical and Laboratory Standards Institute; 2017

  14. 14.

    Espinel-Ingroff A (2001) In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 39(3):954–958. https://doi.org/10.1128/JCM.39.3.954-958.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Espinel-Ingroff A, Chaturvedi V, Fothergill A, Rinaldi MG (2002) Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol 40(10):3776–3781. https://doi.org/10.1128/jcm.40.10.3776-3781.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zhang X, Huang H, Feng P, Zhang J, Zhong Y, Xue R, Xie Z, Li M, Xi L (2011) In vitro activity of itraconazole in combination with terbinafine against clinical strains of itraconazole-insensitive Sporothrix schenckii. Eur J Dermatol 21(4):573–576. https://doi.org/10.1684/ejd.2011.1400

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J (2007) Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 45(10):3198–3206. https://doi.org/10.1128/JCM.00808-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cruz RC, Werneck SM, Oliveira CS et al (2013) Influence of different media, incubation times, and temperatures for determining the MICs of seven antifungal agents against Paracoccidioides brasiliensis by microdilution. J Clin Microbiol 51(2):436–443. https://doi.org/10.1128/JCM.02231-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H (1998) Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 28(12):1203–1253. https://doi.org/10.1080/004982598238886

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Brilhante RS, Paiva MA, Sampaio CM et al (2016) Azole resistance in Candida spp. isolated from Catu Lake, Ceara, Brazil: an efflux-pump-mediated mechanism. Braz J Microbiol 47(1):33–38. https://doi.org/10.1016/j.bjm.2015.11.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96. https://doi.org/10.1016/j.bcp.2016.11.019

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Pasricha S, Payne M, Canovas D, Pase L, Ngaosuwankul N, Beard S, Oshlack A, Smyth GK, Chaiyaroj SC, Boyce KJ, Andrianopoulos A (2013) Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3 (Bethesda) 3(11):1997–2014. https://doi.org/10.1534/g3.113.006809

    CAS  Article  Google Scholar 

  23. 23.

    Cordoba S, Isla G, Szusz W et al (2018) Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses 61(7):441–448. https://doi.org/10.1111/myc.12760

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Marimon R, Serena C, Gene J, Cano J, Guarro J (2008) In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob Agents Ch 52(2):732–734. https://doi.org/10.1128/AAC.01012-07

    CAS  Article  Google Scholar 

  25. 25.

    Ottonelli Stopiglia CD, Magagnin CM, Castrillón MR et al (2013) Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol:1–9. https://doi.org/10.3109/13693786.2013.818726

  26. 26.

    Espinel-Ingroff A, Abreu DPB, Almeida-Paes R, Brilhante RSN, Chakrabarti A, Chowdhary A, Hagen F, Córdoba S, Gonzalez GM, Govender NP, Guarro J, Johnson EM, Kidd SE, Pereira SA, Rodrigues AM, Rozental S, Szeszs MW, Ballesté Alaniz R, Bonifaz A, Bonfietti LX, Borba-Santos LP, Capilla J, Colombo AL, Dolande M, Isla MG, Melhem MSC, Mesa-Arango AC, Oliveira MME, Panizo MM, Pires de Camargo Z, Zancope-Oliveira RM, Meis JF, Turnidge J (2017) Multicenter, international study of MIC/MEC distributions for definition of epidemiological cutoff values for Sporothrix species identified by molecular methods. Antimicrob Agents Ch 61(10). https://doi.org/10.1128/AAC.01057-17

  27. 27.

    Galhardo MC, De Oliveira RM, Valle AC et al (2008) Molecular epidemiology and antifungal susceptibility patterns of Sporothrix schenckii isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil. Med Mycol 46(2):141–151. https://doi.org/10.1080/13693780701742399

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Silveira CP, Torres-Rodriguez JM, Alvarado-Ramirez E et al (2009) MICs and minimum fungicidal concentrations of amphotericin B, itraconazole, posaconazole and terbinafine in Sporothrix schenckii. J Med Microbiol 58(Pt 12):1607–1610. https://doi.org/10.1099/jmm.0.007609-0

    CAS  Article  Google Scholar 

  29. 29.

    Song Y, Li SS, Zhong SX, Liu YY, Yao L, Huo SS (2013) Report of 457 sporotrichosis cases from Jilin province, northeast China, a serious endemic region. J Eur Acad Dermatol Venereol 27(3):313–318. https://doi.org/10.1111/j.1468-3083.2011.04389.x

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Francesconi G, Francesconi DVA, Passos SL et al (2011) Comparative study of 250 mg/day terbinafine and 100 mg/day itraconazole for the treatment of cutaneous sporotrichosis. Mycopathologia 171(5):349–354. https://doi.org/10.1007/s11046-010-9380-8

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Meinerz AR, Xavier MO, Cleff MB et al (2008) Efficacy of terbinafine and itraconazole on a experimental model of systemic sporotrichosis. Braz J Microbiol 39(4):734–737. https://doi.org/10.1590/S1517-838220080004000025

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Mahajan VK (2014) Sporotrichosis: an overview and therapeutic options. Dermatol Res Pract 2014:272376–272313. https://doi.org/10.1155/2014/272376

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kauffman CA, Bustamante B, Chapman SW, Pappas PG (2007) Clinical practice guidelines for the management of sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45(10):1255–1265. https://doi.org/10.1086/522765

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Paixao AG, Galhardo M, Almeida-Paes R et al (2015) The difficult management of disseminated Sporothrix brasiliensis in a patient with advanced AIDS. AIDS Res Ther 12:16. https://doi.org/10.1186/s12981-015-0051-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Catherine Dandie, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This study received funding from the National Natural Science Foundation of China [grant numbers 81573060, 81703136, and 81803147] and the Science & Technology Project Foundation of Jilin Province [grant number 20170204060SF].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Sandro Rogerio de Almeida.

Electronic supplementary material

ESM 1

(DOC 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, S., Shi, Y. et al. In vitro antifungal susceptibility of Sporothrix globosa isolates from Jilin Province, northeastern China: comparison of yeast and mycelial phases. Braz J Microbiol (2020). https://doi.org/10.1007/s42770-020-00316-y

Download citation

Keywords

  • Growth phase
  • Sporothrix globosa
  • Sporothrix schenckii
  • Antifungal susceptibility
  • Incubation temperature