Identification of Campylobacter fetus subsp. venerealis virulence genes in cervical mucus from cows


We used the polymerase chain reaction to identify virulence genes in cervico-vaginal mucus samples from cows positive for Campylobacter fetus subsp. venerealis. There was positivity for the pldA, racR, dnaJ, cdtA, and cdtB genes. No samples showed the cdtC, ciaB, cadF, wlaN, and virB11 genes.

This is a preview of subscription content, access via your institution.


  1. 1.

    Debruyne L, Gevers D, Vandamme P (2008) Taxonomy of the family. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Campylobacter. ASM Press, Washington, pp 3–26

    Google Scholar 

  2. 2.

    Woo PC, Leung KW, Tsoi HW, Wong SS, Teng JL, Yuen KY (2002) Thermo-tolerant Campylobacter fetus bacteraemia identified by 16S ribosomal RNA gene sequencing: an emerging pathogen in immunocompromised patients. J Med Microbiol 51(9):740–746

    CAS  PubMed  Google Scholar 

  3. 3.

    Zonios DI, Panayiotakopoulos GD, Kabletsas EO, Tzima EL, Stefanou I, Archimandritis AJ (2005) Campylobacter fetus bacteraemia in a healthy individual: clinical and therapeutical implications. J Inf Secur 51(4):329–332

    Google Scholar 

  4. 4.

    Bondurant RH (2005) Venereal diseases of cattle: natural history, diagnosis, and the role of vaccines in their control. Vet Clin North Am Food Anim Pract 21(2):383–408

    PubMed  Google Scholar 

  5. 5.

    Alves TM, Stynen AP, Miranda KL, Lage AP (2011) Campilobacteriose genital bovina e tricomonose genital bovina: epidemiologia, diagnóstico e controle. Pesq Vet Bras 31(4):336–344

    Google Scholar 

  6. 6.

    Organização Internacional de Epizootias. OIE-Listed diseases, infections and infestations in force in 2015. Accessed 29 Jan 2015

  7. 7.

    Wooldrige KG, Ketley JM (1997) Campylobacter- host cell interactions. Trends Microbiol 5(3):96–102

    Google Scholar 

  8. 8.

    Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M (2008) Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg 102(2):123–129

    CAS  PubMed  Google Scholar 

  9. 9.

    Kaakoush NO, Mitchell HM, Man SM (2015) Campylobacter. Mol Med Microbiol 2(1):1187–1236

    CAS  Google Scholar 

  10. 10.

    Moolhuijzen PM, Lew-Tabor AE, Wlodek BM et al (2008) Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiol 9(1):86

    Google Scholar 

  11. 11.

    Kienesberger S, Sprenger H, Wolfgruber S, Halwachs B, Thallinger GG, Perez-Perez GI, Blaser MJ, Zechner EL, Gorkiewicz G (2014) Comparative genome analysis of Campylobacter fetus subspecies revealed horizontally acquired genetic elements important for virulence and niche specificity. PLoS One 9(1):e85491

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ziprin RL, Young CR, Byrd JA, Stanker LH, Hume ME, Gray SA, Kim BJ, Konkel ME (2001) Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis 45(3):549–557

    CAS  PubMed  Google Scholar 

  13. 13.

    Bras AM, Chatterjee S, Wren BW, Newell DG, Ketley JM (1999) A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol 181(10):3298–3302

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bacon DJ, Alm RA, Burr DH, Hu L, Kopecko DJ, Ewing CP, Trust TJ, Guerry P (2000) Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun 68(8):4384–4390

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rivera-Amill V, Kim BJ, Seshu J, Konkel ME (2001) Secretion of the virulence-associated campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J Infect Dis 183(11):1607–1616

    CAS  PubMed  Google Scholar 

  16. 16.

    Purdy D, Buswell CM, Hodgson AE, McAlpine K, Henderson I, Leach SA (2000) Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J Med Microbiol 49(5):473–479

    CAS  PubMed  Google Scholar 

  17. 17.

    Lara-Tejero M, Galan JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69(7):4358–4365

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, Wakarchuk WW, Gregson NA, Wren BW (2000) Phase variation of a −1,3- galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 37(3):501–514

    CAS  PubMed  Google Scholar 

  19. 19.

    Datta S, Niwa H, Itoh K (2003) Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J Medical Microbiol 52(4):345–348

    CAS  Google Scholar 

  20. 20.

    Hum S, Quinn K, Brunner B, On SLW (1997) Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies. Aust Vet J 75(11):827–831

    CAS  PubMed  Google Scholar 

  21. 21.

    Asakura M, Samosornsuk W, Hinenoya A, Misawa N, Nishimura K, Matsuhisa A, Yamasaki S (2008) Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunol Med Microbiol 52(2):260–266

    CAS  PubMed  Google Scholar 

  22. 22.

    Konkel ME, Kim BJ, Rivera-Amil V, Garvis SG (1999) Identification of proteins required for the internalization of Campylobacter jejuni into cultured mammalian cells. Adv Exp Med Biol 473(2):215–224

    CAS  PubMed  Google Scholar 

  23. 23.

    Hamidian M, Sanaei M, Bolfion M, Dabiri H, Zali MR, Walther-Rasmussen J (2011) Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran. Can J Microbiol 57(2):143–148

    CAS  PubMed  Google Scholar 

  24. 24.

    Fouts DE, Mongodin EF, Mandrell RE et al (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3(1):72–85

    CAS  Google Scholar 

  25. 25.

    Biswas D, Hannon SJ, Townsend HG, Potter A, Allan BJ (2011) Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. Int Microbiol 14(1):25–32

    CAS  PubMed  Google Scholar 

  26. 26.

    Wysok B, Wojtacka J (2018) Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microb Pathog 115:257–263

    CAS  PubMed  Google Scholar 

  27. 27.

    Grant KA, Belandia IU, Dekker N, Richardson PT, Park SF (1997) Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated hemolysis. Infect Immun 65:1172–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fouts DE, Mongodin EE, Nelson KE (2007) Campylobacter pathogenomics: genomes and beyond. In: Pallen MJ, Nelson KE, Preston GM (eds) Bacterial pathogenomics. ASM Press, Washington, pp 162–166

    Google Scholar 

  29. 29.

    Dasti JI, Tareen AM, Lugert R, Zautner AE, Grob U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300(4):205–211

    CAS  PubMed  Google Scholar 

  30. 30.

    Garcillan-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33(3):657–687

    CAS  PubMed  Google Scholar 

  31. 31.

    Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiß S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255

    CAS  PubMed  Google Scholar 

  32. 32.

    Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL (1998) Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun 66(5):1934–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Young KT, Davis LM, DiRita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5(9):665–679

    CAS  PubMed  Google Scholar 

  34. 34.

    Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin B, Guerry P, Wai S (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9(1):220

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Weis AM, Storey DB, Taff CC, Townsend AK, Huang BC, Kong NT, Clothier KA, Spinner A, Byrne BA, Weimer BC (2016) Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock. Appl Environ Microbiol 82(24):7165–7175

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Siddiqui FM, Akram M, Noureen N, Noreen Z, Bokhari H (2015) Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan. Asian Pac J Trop Med 8(3):197–202

    CAS  PubMed  Google Scholar 

  37. 37.

    Raeisi M, Khoshbakht R, Ghaemi EA, Bayani M, Hashemi M, Seyedghasemi NS, Shirzad-Aski H (2017) Antimicrobial resistance and virulence-associated genes of Campylobacter spp. isolated from raw milk, fish, poultry, and red meat. Microb Drug Resist 23(7):925–933

    CAS  PubMed  Google Scholar 

  38. 38.

    Monteville MR, Yoon JE, Konkel ME (2003) Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outermembrane protein and microfilament reorganization. Microbiol 149(1):153–165

    CAS  Google Scholar 

  39. 39.

    Ghunaim H, Behnke JM, Aigha I, Sharma A, Doiphode SH, Deshmukh A, Abu-Madi MM (2015) Analysis of resistance to antimicrobials and presence of virulence/stress response genes in Campylobacter isolates from patients with severe diarrhoea. PLoS One 10(3):e0119268

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Barinov A, Loux V, Hammani A, Nicolas P, Langella P, Ehrlich D, Maguin E, van de Guchte M (2009) Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 9(1):61–73

    CAS  PubMed  Google Scholar 

  41. 41.

    Wallden K, Rivera-Calzada A, Waksman G (2010) Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12(9):1203–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kienesberger S, Trummler CS, Fauster A, Lang S, Sprenger H, Gorkiewicz G, Zechner EL (2011) Interbacterial macromolecular transfer by the Campylobacter fetus subsp. venerealis type IV secretion system. J Bacteriol 193(3):744–758

    CAS  PubMed  Google Scholar 

  43. 43.

    Ali A, Soares SC, Santos AR, Guimarães LC, Barbosa E, Almeida SS, Abreu VAC, Carneiro AR, Ramos RTJ, Bakhtiar SM, Hassan SS, Ussery DW, On S, Silva A, Schneider MP, Lage AP, Miyoshi A, Azevedo V (2012) Campylobacter fetus subspecies: comparative genomics and prediction of potential virulence targets. Gene 508(2):145–156

    CAS  PubMed  Google Scholar 

  44. 44.

    Bang DD, Nielsen EM, Scheutz F, Pedersen K, Handber K, Madsen M (2003) PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. J Appl Microbiol 94(6):1003–1014

    CAS  PubMed  Google Scholar 

  45. 45.

    Tracz DM, Keelan M, Ahmed-Bentley J, Gibreel A, Kowalewska-Grochowska K, Taylor DE (2005) pVir and bloody diarrhea in Campylobacter jejuni enteritis. Emerg Infect Dis 11(6):839–843

    PubMed Central  Google Scholar 

  46. 46.

    Khoshbakht R, Tabatabaei M, Shirzad Aski H, Hosseinzadeh S (2014) Occurrence of virulence genes and strain diversity of thermophilic campylobacters isolated from cattle and sheep faecal samples. Iran J Vet Res 15(2):138–144

    Google Scholar 

  47. 47.

    Gilbert M, Parker CT, Moran AP (2008) Campylobacter jejuni Lipooligosaccharides: structures and biosynthesis. ASM Press, Washington, pp 483–504

    Google Scholar 

  48. 48.

    Sahin O, Yaeger M, Wu Z, Zhang Q (2017) Campylobacter-associated diseases in animals. Annu Rev Anim Biosci 5:21–42

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Érica Chaves Lúcio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Elizabeth Marques

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lúcio, É.C., Barros, M.R., Mota, R.A. et al. Identification of Campylobacter fetus subsp. venerealis virulence genes in cervical mucus from cows. Braz J Microbiol 50, 1133–1137 (2019).

Download citation


  • Bovine
  • Campylobacteriosis
  • Pathogenicity
  • Virulence