Skip to main content

Advertisement

Log in

A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

Municipal solid waste (MSW) management has emerged as probably the most pressing issue many governments nowadays are facing. Traditionally, Waste-to-Energy(WtE) is mostly associated with incineration, but now, with the emergence of the bioeconomy, it embraces a broader definition comprising any processing technique that can generate electricity/heat or produce a waste-derived fuel. Under the ambit of the circular economy many nations are looking for, additional effort must be made to be sure of acquiring the most updated information and paving a sustainable path for managing MSW in such a frame. In this regard, we have undertaken a critical review of various technologies, with their updated progress, involved in the exploitation of MSW as a renewable resource, along with the critical advantages and limitations on energy and material cycling for sustainable MSW management. Incineration, the most widely used method, is nowadays difficult to further apply due to its dubious reputation and social opposition. Meanwhile, to address the organic fraction of MSW which currently is mostly unrecycled and causes disposal issues, the biological approach presents an attractive option. The new emphasis of bioeconomy leads us to understand how environmental biotechnologies should be better connected/integrated for more sustainable MSW management. This article is concluded with advances of future prospects, which can serve as a timely reminder to encourage competent authorities/researchers to work towards further improvement of the present MSW management system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Moya D, Aldás C, López G, Kaparaju P. Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia. 2017;134:286–95.

    Article  Google Scholar 

  2. Pour N, Webley PA, Cook PJ. Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int J Greenh Gas Control. 2018;68:1–15.

    Article  CAS  Google Scholar 

  3. Di Matteo U, Nastasi B, Albo A, Astiaso Garcia D. Energy contribution of OFMSW (organic fraction of municipal solid waste) to energy-environmental sustainability in urban areas at small scale. Energies. 2017;10(2):229.

    Article  CAS  Google Scholar 

  4. Zhao X-G, Jiang G-W, Li A, Li Y. Technology, cost, a performance of waste-to-energy incineration industry in China. Renew Sustain Energy Rev. 2016;55:115–30.

    Article  Google Scholar 

  5. Zhou H, Meng A, Long Y, Li Q, Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Manag. 2015;36:106–18.

    Article  CAS  Google Scholar 

  6. Tozlu A, Özahi E, Abuşoğlu A. Waste to energy technologies for municipal solid waste management in Gaziantep. Renew Sustain Energy Rev. 2016;54:809–15.

    Article  Google Scholar 

  7. Pandey BK, Vyas S, Pandey M, Gaur A. Municipal solid waste to energy conversion methodology as physical, thermal, and biological methods. Curr Sci Perspect. 2016;2:39–46.

    Google Scholar 

  8. Zabaniotou A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy—a multidisciplinary review. J Clean Prod. 2018;177:197–206.

    Article  Google Scholar 

  9. Tisserant A, Pauliuk S, Merciai S, Schmidt J, Fry J, Wood R, Tukker A. Solid waste and the circular economy: a global analysis of waste treatment and waste footprints. J Ind Ecol. 2017;21(3):628–40.

    Article  Google Scholar 

  10. Hoornweg D, Bhada-Tata P. What a waste: a global review of solid waste management, vol. 15. Washington, DC: World Bank; 2012. p. 116.

    Google Scholar 

  11. Krook J, Baas L. Getting serious about mining the technosphere: a review of recent landfill mining and urban mining research. J Clean Prod. 2013;55:1–9.

    Article  Google Scholar 

  12. Kurdve M, Shahbazi S, Wendin M, Bengtsson C, Wiktorsson M. Waste flow mapping to improve sustainability of waste management: a case study approach. J Clean Prod. 2015;98:304–15.

    Article  Google Scholar 

  13. Silva TF, Soares PA, Manenti DR, Fonseca A, Saraiva I, Boaventura RA, Vilar VJ. An innovative multistage treatment system for sanitary landfill leachate depuration: studies at pilot-scale. Sci Total Environ. 2017;576:99–117.

    Article  CAS  Google Scholar 

  14. Dangi MB, Schoenberger E, Boland JJ. Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal. Waste Manag Res. 2017;35(6):618–26.

    Article  Google Scholar 

  15. Malinauskaite J, Jouhara H. The trilemma of waste-to-energy: a multi-purpose solution. Energy Policy. 2019;129:636–45.

    Article  Google Scholar 

  16. Saavedra YM, Iritani DR, Pavan AL, Ometto AR. Theoretical contribution of industrial ecology to circular economy. J Clean Prod. 2018;170:1514–22.

    Article  Google Scholar 

  17. Schroeder P, Dewick P, Kusi-Sarpong S, Hofstetter JS. Circular economy and power relations in global value chains: tensions and trade-offs for lower income countries. Resour Conserv Recycl. 2018;136:77–8.

    Article  Google Scholar 

  18. Zhou H, Long Y, Meng A, Li Q, Zhang Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel. 2015;145:151–7.

    Article  CAS  Google Scholar 

  19. US EPA. Advancing sustainable materials management: facts and figures. US Environ Prot Agency. 2013;2015:1–16.

    Google Scholar 

  20. Malinauskaite J, Jouhara H, Czajczyńska D, Stanchev P, Katsou E, Rostkowski P, Anguilano L. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy. 2017;141:2013–44.

    Article  Google Scholar 

  21. Brunner PH, Fellner J. Setting priorities for waste management strategies in developing countries. Waste Manag Res. 2007;25(3):234–40.

    Article  Google Scholar 

  22. Soltani A, Sadiq R, Hewage K. Selecting sustainable waste-to-energy technologies for municipal solid waste treatment: a game theory approach for group decision-making. J Clean Prod. 2016;113:388–99.

    Article  Google Scholar 

  23. Diaz-Barriga-Fernandez AD, Santibañez-Aguilar JE, Radwan N, Nápoles-Rivera F, El-Halwagi MM, Ponce-Ortega JM. Strategic planning for managing municipal solid wastes with consideration of multiple stakeholders. ACS Sustain Chem Eng. 2017;5(11):10744–62.

    Article  CAS  Google Scholar 

  24. Suthar S, Rayal P, Ahada CP. Role of different stakeholders in trading of reusable/recyclable urban solid waste materials: a case study. Sustain Cities Soc. 2016;22:104–15.

    Article  Google Scholar 

  25. Makarichi L, Jutidamrongphan W, Techato KA. The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev. 2018;91:812–21.

    Article  CAS  Google Scholar 

  26. Bosmans A, Vanderreydt I, Geysen D, Helsen L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod. 2013;55:10–23.

    Article  Google Scholar 

  27. Astrup TF, Tonini D, Turconi R, Boldrin A. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste Manag. 2015;37:104–15.

    Article  CAS  Google Scholar 

  28. Malindzakova M, Straka M, Rosova A, Kanuchova M, Trebuna P. Modeling the process for incineration of municipal waste. Przem Chem. 2015;94(8):1260–4.

    CAS  Google Scholar 

  29. Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017;69:407–22.

    Article  CAS  Google Scholar 

  30. Jiao F, Zhang L, Dong Z, Namioka T, Yamada N, Ninomiya Y. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Process Technol. 2016;152:108–15.

    Article  CAS  Google Scholar 

  31. Deng D, Qiao J, Liu M, Kołodyńska D, Zhang M, Dionysiou DD, Ju Y, Ma J, Chang MB. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: addition of urea on the degradation of Dioxin and mechanism. J Hazard Mater. 2019;369:279–89.

    Article  CAS  Google Scholar 

  32. Gao X, Yuan B, Yu QL, Brouwers HJH. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J Clean Prod. 2017;164:410–9.

    Article  CAS  Google Scholar 

  33. Birgisdottir H, Pihl KA, Bhander G, Hauschild MZ, Christensen TH. Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration. Transp Res Part D Trans Environ. 2006;11(5):358–68.

    Article  Google Scholar 

  34. Xie R, Xu Y, Huang M, Zhu H, Chu F. Assessment of municipal solid waste incineration bottom ash as a potential road material. Road Mater Pavement Des. 2017;18(4):992–8.

    Article  CAS  Google Scholar 

  35. Brunner PH, Rechberger H. Waste to energy–key element for sustainable waste management. Waste Manag. 2015;37:3–12.

    Article  CAS  Google Scholar 

  36. Haghighi HK, Irannajad M, Fortuny A, Sastre AM. Recovery of germanium from leach solutions of fly ash using solvent extraction with various extractants. Hydrometallurgy. 2018;175:164–9.

    Article  CAS  Google Scholar 

  37. Li G, Wu Q, Wang S, Li Z, Liang H, Tang Y, Wang F. The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chem Eng J. 2017;326:561–9.

    Article  CAS  Google Scholar 

  38. Jones AM, Harrison RM. Emission of ultrafine particles from the incineration of municipal solid waste: a review. Atmos Environ. 2016;140:519–28.

    Article  CAS  Google Scholar 

  39. Lu JW, Zhang S, Hai J, Lei M. Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions. Waste Manag. 2017;69:170–86.

    Article  Google Scholar 

  40. Wang Y, Lai N, Zuo J, Chen G, Du H. Characteristics and trends of research on waste-to-energy incineration: a bibliometric analysis, 1999–2015. Renew Sustain Energy Rev. 2016;66:95–104.

    Article  CAS  Google Scholar 

  41. Dong J, Chi Y, Tang Y, Ni M, Nzihou A, Weiss-Hortala E, Huang Q. Effect of operating parameters and moisture content on municipal solid waste pyrolysis and gasification. Energy Fuels. 2016;30(5):3994–4001.

    Article  CAS  Google Scholar 

  42. Song G, Qi X, Song W, Lu Q. Slagging characteristics of Zhundong coal during circulating fluidized bed gasification. Energy Fuels. 2016;30(5):3967–74.

    Article  CAS  Google Scholar 

  43. Qi T, Lei T, Yan B, Chen G, Li Z, Fatehi H, Bai XS. Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. Int J Hydrog Energy. 2019;44(13):6448–60.

    Article  CAS  Google Scholar 

  44. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M. Recent advances in the gasification of waste plastics. A critical overview. Renew Sustain Energy Rev. 2018;82:576–96.

    Article  CAS  Google Scholar 

  45. Win MM, Asari M, Hayakawa R, Hosoda H, Yano J, Sakai SI. Characteristics of gas from the fluidized bed gasification of refuse paper and plastic fuel (RPF) and wood biomass. Waste Manag. 2019;87:173–82.

    Article  CAS  Google Scholar 

  46. Deng N, Zhang A, Zhang Q, He G, Cui W, Chen G, Song C. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model. Bioresour Technol. 2017;235:371–9.

    Article  CAS  Google Scholar 

  47. Schulze S, Nikrityuk P, Abosteif Z, Guhl S, Richter A, Meyer B. Heat and mass transfer within thermogravimetric analyser: from simulation to improved estimation of kinetic data for char gasification. Fuel. 2017;187:338–48.

    Article  CAS  Google Scholar 

  48. Ramzan N, Ashraf A, Naveed S, Malik A. Simulation of hybrid biomass gasification using Aspen plus: a comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenerg. 2011;35(9):3962–9.

    Article  CAS  Google Scholar 

  49. Sanlisoy A, Carpinlioglu MO. A review on plasma gasification for solid waste disposal. Int J Hydrog Energy. 2017;42(2):1361–5.

    Article  CAS  Google Scholar 

  50. Yang Y, Heaven S, Venetsaneas N, Banks CJ, Bridgwater AV. Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): characterisation of products and screening of the aqueous liquid product for anaerobic digestion. Appl Energy. 2018;213:158–68.

    Article  CAS  Google Scholar 

  51. Gopu C, Gao L, Volpe M, Fiori L, Goldfarb JL. Valorizing municipal solid waste: waste to energy and activated carbons for water treatment via pyrolysis. J Anal Appl Pyrol. 2018;133:48–58.

    Article  CAS  Google Scholar 

  52. Fang S, Gu W, Chen L, Yu Z, Dai M, Lin Y, Ma X. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test. Bioresour Technol. 2018;258:5–11.

    Article  CAS  Google Scholar 

  53. Chen D, Yin L, Wang H, He P. Reprint of: pyrolysis technologies for municipal solid waste: a review. Waste Manag. 2015;37:116–36.

    Article  Google Scholar 

  54. Sipra AT, Gao N, Sarwar H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts. Fuel Process Technol. 2018;175:131–47.

    Article  CAS  Google Scholar 

  55. Stępień P, Białowiec A. Kinetic parameters of torrefaction process of alternative fuel produced from municipal solid waste and characteristic of carbonized refuse derived fuel. Detritus. 2018;3:75–83.

    Google Scholar 

  56. Nobre C, Alves O, Longo A, Vilarinho C, Gonçalves M. Torrefaction and carbonization of refuse derived fuel: char characterization and evaluation of gaseous and liquid emissions. Bioresour Technol. 2019;285:121325.

    Article  CAS  Google Scholar 

  57. Kristinsson HG, Jörundsdóttir HÓ. Food in the bioeconomy. Trends Food Sci Technol. 2019;84:4–6.

    Article  CAS  Google Scholar 

  58. Koukios E, Monteleone M, Carrondo MJT, Charalambous A, Girio F, Hernández EL, Zabaniotou A. Targeting sustainable bioeconomy: a new development strategy for Southern European countries. The Manifesto of the European Mezzogiorno. J Clean Prod. 2018;172:3931–41.

    Article  Google Scholar 

  59. Viaggi D. Towards an economics of the bioeconomy: four years later. Bio-based Appl Econ J. 2018;5(1050-2018-3671):101–12.

    Google Scholar 

  60. Scarlat N, Fahl F, Dallemand JF. Status and opportunities for energy recovery from municipal solid waste in Europe. Waste Biomass Valoriz. 2018. https://doi.org/10.1007/s12649-018-0297-7.

    Article  Google Scholar 

  61. Zheng Y, Jenkins BM, Kornbluth K, Kendall A, Træholt C. Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Appl Energy. 2018;230:836–44.

    Article  Google Scholar 

  62. Rodríguez-Monroy C, Mármol-Acitores G, Nilsson-Cifuentes G. Electricity generation in Chile using non-conventional renewable energy sources—a focus on biomass. Renew Sustain Energy Rev. 2018;81:937–45.

    Article  Google Scholar 

  63. Budzianowski WM. High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev. 2017;70:793–804.

    Article  CAS  Google Scholar 

  64. Bender TA, Dabrowski JA, Gagné MR. Homogeneous catalysis for the production of low–volume, high–value chemicals from biomass. Nat Rev Chem. 2018;2:35–46.

    Article  CAS  Google Scholar 

  65. Gao A, Tian Z, Wang Z, Wennersten R, Sun Q. Comparison between the technologies for food waste treatment. Energy Procedia. 2017;105:3915–21.

    Article  CAS  Google Scholar 

  66. Vigil M, Marey-Pérez MF, Huerta GM, Cabal VÁ. Is phytoremediation without biomass valorization sustainable?—comparative LCA of landfilling vs. anaerobic co-digestion. Sci Total Environ. 2015;505:844–50.

    Article  CAS  Google Scholar 

  67. Hasan AM, Ammenberg J. Biogas potential from municipal and agricultural residual biomass for power generation in Hazaribagh, Bangladesh—a strategy to improve the energy system. Renew Energy Focus. 2019;29:14–23.

    Article  Google Scholar 

  68. Safarudin A, Millati R, Taherzadeh MJ, Niklasson C. Inhibition of patchouli oil for anaerobic digestion and enhancement in methane production using reverse membrane bioreactors. Renew Energy. 2018;129:748–53.

    Article  CAS  Google Scholar 

  69. Chen L, Tsui TH, Ekama GA, Mackey HR, Hao T, Chen G. Development of biochemical sulfide potential (BSP) test for sulfidogenic biotechnology application. Water Res. 2018;135:231–40.

    Article  CAS  Google Scholar 

  70. Meng X, Yu D, Wei Y, Zhang Y, Zhang Q, Wang Z, Wang Y. Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: an alternative for alleviating ammonia inhibition? Process Biochem. 2018;69:144–52.

    Article  CAS  Google Scholar 

  71. Polizzi C, Alatriste-Mondragón F, Munz G. The role of organic load and ammonia inhibition in anaerobic digestion of tannery fleshing. Water Resources and Industry. 2018;19:25–34.

    Article  Google Scholar 

  72. Rodriguez-Verde I, Regueiro L, Lema JM, Carballa M. Blending based optimisation and pretreatment strategies to enhance anaerobic digestion of poultry manure. Waste Manag. 2018;71:521–31.

    Article  CAS  Google Scholar 

  73. Gil A, Siles JA, Martín MA, Chica AF, Estévez-Pastor FS, Toro-Baptista E. Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge. Renew Energy. 2018;115:917–25.

    Article  CAS  Google Scholar 

  74. Yao Y, Bergeron AD, Davaritouchaee M. Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew Energy. 2018;115:139–48.

    Article  CAS  Google Scholar 

  75. Kor-Bicakci G, Eskicioglu C. c Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew Sustain Energy Rev. 2018;110:423–43.

    Article  CAS  Google Scholar 

  76. Farhat A, Asses N, Ennouri H, Hamdi M, Bouallagui H. Combined effects of thermal pretreatment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production. Process Saf Environ Prot. 2018;119:14–22.

    Article  CAS  Google Scholar 

  77. Qian J, Zhou J, Pei X, Zhang M, Liu Y. Bioactivities and formation/utilization of soluble microbial products (SMP) in the biological sulfate reduction under different conditions. Chemosphere. 2019;221:37–44.

    Article  CAS  Google Scholar 

  78. Ye M, Liu J, Ma C, Li YY, Zou L, Qian G, Xu ZP. Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review. J Clean Prod. 2018;192:316–26.

    Article  CAS  Google Scholar 

  79. Zhou M, Yan B, Wong JW, Zhang Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol. 2018;248:68–78.

    Article  CAS  Google Scholar 

  80. Yan BH, Selvam A, Wong JW. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor. Bioresour Technol. 2016;217:3–9.

    Article  CAS  Google Scholar 

  81. Mehariya S, Patel AK, Obulisamy PK, Punniyakotti E, Wong JW. Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Bioresour Technol. 2018;265:519–31.

    Article  CAS  Google Scholar 

  82. Tsui TH, Ekama GA, Chen GH. Quantitative characterization and analysis of granule transformations: role of intermittent gas sparging in a super high-rate anaerobic system. Water Res. 2018;139:177–86.

    Article  CAS  Google Scholar 

  83. Tsui TH, Chen L, Hao T, Chen GH. A super high-rate sulfidogenic system for saline sewage treatment. Water Res. 2016;104:147–55.

    Article  CAS  Google Scholar 

  84. Karthikeyan OP, Trably E, Mehariya S, Bernet N, Wong JW, Carrere H. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol. 2018;249:1025–39.

    Article  CAS  Google Scholar 

  85. Di Maria F, Barratta M, Bianconi F, Placidi P, Passeri D. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: comparison of system performances and identification of microbial guilds. Waste Manag. 2017;59:172–80.

    Article  CAS  Google Scholar 

  86. Stiles WA, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Chaloner T. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol. 2018;267:732–42.

    Article  CAS  Google Scholar 

  87. Kocatürk-Schumacher NP, Zwart K, Bruun S, Stoumann Jensen L, Sørensen H, Brussaard L. Recovery of nutrients from the liquid fraction of digestate: use of enriched zeolite and biochar as nitrogen fertilizers. J Plant Nutr Soil Sci. 2018;182:187–95.

    Article  CAS  Google Scholar 

  88. Tambone F, Orzi V, Zilio M, Adani F. Measuring the organic amendment properties of the liquid fraction of digestate. Waste Manag. 2019;88:21–7.

    Article  CAS  Google Scholar 

  89. Montero E, Olguín EJ, De Philippis R, Reverchon F. Mixotrophic cultivation of Chlorococcum sp. under non-controlled conditions using a digestate from pig manure within a biorefinery. J Appl Phycol. 2018;30(5):2847–57.

    Article  CAS  Google Scholar 

  90. Somers MH, Azman S, Sigurnjak I, Ghyselbrecht K, Meers E, Meesschaert B, Appels L. Effect of digestate disintegration on anaerobic digestion of organic waste. Bioresour Technol. 2018;8:568–76.

    Article  CAS  Google Scholar 

  91. Pappalardo G, Selvaggi R, Bracco S, Chinnici G, Pecorino B. Factors affecting purchasing process of digestate: evidence from an economic experiment on Sicilian farmers’ willingness to pay. Agric Food Econ. 2018;6(1):16.

    Article  Google Scholar 

  92. Borowski S, Boniecki P, Kubacki P, Czyżowska A. Food waste co-digestion with slaughterhouse waste and sewage sludge: digestate conditioning and supernatant quality. Waste Manag. 2018;24:158–67.

    Article  CAS  Google Scholar 

  93. Logan M, Visvanathan C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res. 2019;37(1_suppl):27–39.

    Article  CAS  Google Scholar 

  94. Tsai WT, Fang YY, Cheng PH, Lin YQ. Characterization of mesoporous biochar produced from biogas digestate implemented in an anaerobic process of large-scale hog farm. Biomass Convers Biorefinery. 2018;8(4):945–51.

    Article  CAS  Google Scholar 

  95. Beck-Broichsitter S, Fleige H, Horn R. Compost quality and its function as a soil conditioner of recultivation layers–a critical review. Int Agrophys. 2018;32(1):11–8.

    Article  CAS  Google Scholar 

  96. Elbashier MM, Shao X, Tingting C, Ali AA. Effects of anaerobic digestate on Chinese melon (Cucumis melo L.) yield components, soil properties, and microbial communities under saline irrigation condition. Commun Soil Sci Plant Anal. 2018;49(19):2446–55.

    Article  CAS  Google Scholar 

  97. Sánchez-Rodríguez AR, Carswell AM, Shaw R, Hunt J, Saunders K, Cotton J, Misselbrook TH. Advanced processing of food waste based digestate for mitigating nitrogen losses in a winter wheat crop. Front Sustain Food Syst. 2018;2:35.

    Article  Google Scholar 

  98. Andersen L, Lamp A, Dieckmann C, Baetge S, Schmidt LM, Kaltschmitt M. Biogas plants as key units of biorefinery concepts: options and their assessment. J Biotechnol. 2018;283:130–9.

    Article  CAS  Google Scholar 

  99. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG. Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv. 2018;36(2):452–66.

    Article  CAS  Google Scholar 

  100. Omar B, Abou-Shanab R, El-Gammal M, Fotidis IA, Kougias PG, Zhang Y, Angelidaki I. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. Water Res. 2018;142:86–95.

    Article  CAS  Google Scholar 

  101. Vo TT, Wall DM, Ring D, Rajendran K, Murphy JD. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex situ methanation. Appl Energy. 2018;212:1191–202.

    Article  CAS  Google Scholar 

  102. Srinuanpan S, Cheirsilp B, Boonsawang P, Prasertsan P. Immobilized oleaginous microalgae as effective two-phase purify unit for biogas and anaerobic digester effluent coupling with lipid production. Bioresour Technol. 2019;281:149–57.

    Article  CAS  Google Scholar 

  103. Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Thakur IS. Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Rep. 2018;1:79–88.

    Article  Google Scholar 

  104. Roubík H, Mazancová J, Le Dinh P, Van Dinh D, Banout J. Biogas quality across small-scale biogas plants: a case of central Vietnam. Energies. 2018;11(7):1794.

    Article  CAS  Google Scholar 

  105. Morgan HM Jr, Xie W, Liang J, Mao H, Lei H, Ruan R, Bu Q. A techno-economic evaluation of anaerobic biogas producing systems in developing countries. Bioresour Technol. 2018;250:910–21.

    Article  CAS  Google Scholar 

  106. Stan C, Collaguazo G, Streche C, Apostol T, Cocarta D. Pilot-scale anaerobic co-digestion of the OFMSW: improving biogas production and startup. Sustainability. 2018;10(6):1939.

    Article  CAS  Google Scholar 

  107. Baek G, Kim J, Kim J, Lee C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies. 2018;11(1):107.

    Article  Google Scholar 

  108. Park JH, Kang HJ, Park KH, Park HD. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresour Technol. 2018;254:300–11.

    Article  CAS  Google Scholar 

  109. Wang T, Zhang D, Dai L, Dong B, Dai X. Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environ Sci Technol. 2018;52(12):7160–9.

    Article  CAS  Google Scholar 

  110. Gao Y, Fang Z, Liang P, Zhang X, Qiu Y, Kimura K, Huang X. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: focus on the impact of salt and ammonia nitrogen. Bioresour Technol. 2019;276:204–10.

    Article  CAS  Google Scholar 

  111. Li J, Shi W, Jiang C, Bai L, Wang T, Yu J, Ruan W. Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater. Bioresour Technol. 2018;266:68–74.

    Article  CAS  Google Scholar 

  112. Akindele AA, Sartaj M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste. Waste Manag. 2018;71:757–66.

    Article  CAS  Google Scholar 

  113. Ma C, Liu J, Ye M, Zou L, Qian G, Li YY. Towards utmost bioenergy conversion efficiency of food waste: pretreatment, co-digestion, and reactor type. Renew Sustain Energy Rev. 2018;90:700–9.

    Article  CAS  Google Scholar 

  114. Tyagi VK, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LR, Ng WJ. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges. Renew Sustain Energy Rev. 2018;93:380–99.

    Article  Google Scholar 

  115. Salama ES, Saha S, Kurade MB, Dev S, Chang SW, Jeon BH. Recent trends in anaerobic co-digestion: fat, oil, and grease (FOG) for enhanced biomethanation. Prog Energy Combust Sci. 2019;70:22–42.

    Article  Google Scholar 

  116. Rodríguez-Abalde Á, Guivernau M, Prenafeta-Boldú FX, Flotats X, Fernández B. Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess Biosyst Eng. 2019;42(7):1175.

    Article  CAS  Google Scholar 

  117. Siddique MNI, Wahid ZA. Achievements and perspectives of anaerobic co-digestion: a review. J Clean Prod. 2018;194:359–71.

    Article  CAS  Google Scholar 

  118. Tsui TH, Hao T, Chen GH. Gas-enhanced operation and stepwise organic stressing as a new alternative in realising successful sludge granulation in high-rate anaerobic bioreactor for wastewater treatment. HKIE Trans. 2016;23(4):222–9.

    Article  Google Scholar 

  119. Wang B, Wu D, Ekama GA, Tsui TH, Jiang F, Chen GH. Characterization of a new continuous gas-mixing sulfidogenic anaerobic bioreactor: hydrodynamics and sludge granulation. Water Res. 2018;135:251–61.

    Article  CAS  Google Scholar 

  120. Kang X, Zhang Y, Song B, Sun Y, Li L, He Y, Yuan Z. The effect of mechanical pretreatment on the anaerobic digestion of Hybrid Pennisetum. Fuel. 2019;252:469–74.

    Article  CAS  Google Scholar 

  121. Song B, Buendia-Kandia F, Yu Y, Dufour A, Wu H. Importance of lignin removal in enhancing biomass hydrolysis in hot-compressed water. Bioresour Technol. 2019;288:121522.

    Article  CAS  Google Scholar 

  122. Wu H, Yin Z, Quan Y, Fang Y, Yin C. Removal of methyl acrylate by ceramic-packed biotrickling filter and their response to bacterial community. Bioresour Technol. 2016;209:237–45.

    Article  CAS  Google Scholar 

  123. Si B, Yang L, Zhou X, Watson J, Tommaso G, Chen WT, Zhang Y. Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chem. 2019;21(6):1305–18.

    Article  CAS  Google Scholar 

  124. Fernandez S, Srinivas K, Schmidt AJ, Swita MS, Ahring BK. Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresour Technol. 2018;247:250–8.

    Article  CAS  Google Scholar 

  125. Yao Y, Zhang Y, Gao B, Chen R, Wu F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ Sci Pollut Res. 2018;25(26):25659–67.

    Article  CAS  Google Scholar 

  126. Luz FC, Cordiner S, Manni A, Mulone V, Rocco V. Biochar characteristics and early applications in anaerobic digestion—a review. J Environ Chem Eng. 2018;6(2):2892–909.

    Article  CAS  Google Scholar 

  127. O’Callaghan K. Technologies for the utilisation of biogenic waste in the bioeconomy. Food Chem. 2016;198:2–11.

    Article  CAS  Google Scholar 

  128. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38(4):522–50.

    Article  CAS  Google Scholar 

  129. Fernando S, Adhikari S, Chandrapal C, Murali N. Biorefineries: current status, challenges, and future direction. Energy Fuels. 2006;20(4):1727–37.

    Article  CAS  Google Scholar 

  130. Kamm B, Gruber PR, Kamm M. Biorefineries-industrial processes and products, vol. 1. New York: Wiley; 2006.

    Google Scholar 

  131. Pleissner D, Lin CSK. Valorisation of food waste in biotechnological processes. Sustain Chem Process. 2013;1(1):21.

    Article  CAS  Google Scholar 

  132. Pleissner D, Lam WC, Sun Z, Lin CSK. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol. 2013;137:139–46.

    Article  CAS  Google Scholar 

  133. Shin HY, Kim SM, Lee JH, Lim ST. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019;272:235–41.

    Article  CAS  Google Scholar 

  134. Dessie W, Zhang W, Xin F, Dong W, Zhang M, Ma J, Jiang M. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour Technol. 2018;247:1177–80.

    Article  CAS  Google Scholar 

  135. Stanley A, Kumar HP, Mutturi S, Vijayendra SN. Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain. Appl Biochem Biotechnol. 2018;184(3):935–52.

    Article  CAS  Google Scholar 

  136. Chen X, Yu L, Qiao G, Chen GQ. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol. 2018;45(7):545–54.

    Article  CAS  Google Scholar 

  137. Johnston B, Kowalczuk M, Hill D, Tchuenbou-Magaia F, Jonah I, Radecka I. From trash to treasure–turning plastic waste into biodegradable polymers using bacteria. Access Microbiol. 2019;1(1A). https://doi.org/10.1099/acmi.ac2019.po0462.

  138. Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manag. 2018;205:215–30.

    Article  CAS  Google Scholar 

  139. Witko T, Guzik M, Sofińska K, Stepien K, Podobinska K. Novel biocompatible polymers for biomedical applications. Biophys J. 2018;114(3):363a.

    Article  Google Scholar 

  140. Bhatia SK, Wadhwa P, Bhatia RK, Patel SKS, Yang YH. Strategy for biosynthesis of polyhydroxyalkonates polymers/copolymers and their application in drug delivery. In: Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, 2019. p. 13–34.

  141. Zhou Y, Selvam A, Wong JW. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour Technol. 2018;249:182–8.

    Article  CAS  Google Scholar 

  142. Asses N, Farhat W, Hamdi M, Bouallagui H. Large scale composting of poultry slaughterhouse processing waste: microbial removal and agricultural biofertilizer application. Process Saf Environ Prot. 2019;124:128–36.

    Article  CAS  Google Scholar 

  143. Styles D, Adams P, Thelin G, Vaneeckhaute C, Chadwick D, Withers PJ. Life cycle assessment of biofertilizer production and use compared with conventional liquid digestate management. Environ Sci Technol. 2018;52(13):7468–76.

    Article  CAS  Google Scholar 

  144. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H. Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis. Renew Energy. 2019;143:64–76.

    Article  Google Scholar 

  145. Paul S, Dutta A, Defersha F. Mechanical and alkaline hydrothermal treated corn residue conversion into bioenergy and biofertilizer: a resource recovery concept. Energies. 2018;11(3):516.

    Article  CAS  Google Scholar 

  146. Smitha GR, Basak BB, Thondaiman V, Saha A. Nutrient management through organics, bio-fertilizers and crop residues improves growth, yield and quality of sacred basil (Ocimum sanctum Linn). Ind Crops Prod. 2019;128:599–606.

    Article  CAS  Google Scholar 

  147. Sharma S, Rana VS, Kumari M, Mishra P. Biofertilizers: boon for fruit production. J Pharmacogn Phytochem. 2018;7(5):3244–7.

    CAS  Google Scholar 

  148. Walsh JJ, Jones DL, Chadwick DR, Williams AP. Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: impacts on pasture yield and quality. Grass Forage Sci. 2018;73(3):758–63.

    Article  CAS  Google Scholar 

  149. Stamenković S, Beškoski V, Karabegović I, Lazić M, Nikolić N. Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J Agric Res. 2018;16(1):1–18.

    Article  Google Scholar 

  150. Qi G, Pan Z, Sugawa Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Umetsu K. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J Mater Cycles Waste Manag. 2018;20(3):1448–57.

    Article  CAS  Google Scholar 

  151. Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res. 2018;149:42–55.

    Article  CAS  Google Scholar 

  152. Zabaniotou A, Kamaterou P. Food waste valorization advocating circular bioeconomy-a critical review of potentialities and perspectives of spent coffee grounds biorefinery. J Clean Prod. 2018;211:1553–66.

    Article  CAS  Google Scholar 

  153. Kannah RY, Velu C, Banu JR, Heimann K, Karthikeyan OP. Food waste valorization by microalgae. In: Waste to wealth. Springer, Singapore, 2018. p. 319–342.

  154. Sarkar O, Butti SK, Mohan SV. Acidogenic biorefinery: food waste valorization to biogas and platform chemicals. In: Waste biorefinery: potential and perspectives, 2018, p. 203.

  155. Brunklaus B, Rex E, Carlsson E, Berlin J. The future of Swedish food waste: an environmental assessment of existing and prospective valorization techniques. J Clean Prod. 2018;202:1–10.

    Article  Google Scholar 

  156. Siciliano A, Limonti C, Mehariya S, Molino A, Calabrò V. Biofuel production and phosphorus recovery through an integrated treatment of agro-industrial waste. Sustainability. 2018;11(1):1–17.

    Article  CAS  Google Scholar 

  157. Paul S, Dutta A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl. 2018;130:164–74.

    Article  Google Scholar 

  158. Kuznetsov BN, Sudakova IG, Garyntseva NV, Levdansky VA, Ivanchenko NM, Pestunov AV, Pinel C. Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Sci Technol. 2018;52(5):1377–94.

    Article  CAS  Google Scholar 

  159. Ashokkumar V, Chen WH, Ngamcharussrivichai C, Agila E, Ani FN. Potential of sustainable bioenergy production from Synechocystis sp cultivated in wastewater at large scale—a low cost biorefinery approach. Energy Convers Manag. 2019;186:188–99.

    Article  CAS  Google Scholar 

  160. Bastidas-Oyanedel JR, Schmidt J. Increasing profits in food waste biorefinery—a techno-economic analysis. Energies. 2018;11(6):1551.

    Article  CAS  Google Scholar 

  161. Song X, Luo W, Hai FI, Price WE, Guo W, Ngo HH, Nghiem LD. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresour Technol. 2018;270:669–77.

    Article  CAS  Google Scholar 

  162. Hao X, Wang X, Liu R, Li S, van Loosdrecht MC, Jiang H. Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 2019;160:268–77.

    Article  CAS  Google Scholar 

  163. Cai C, Shi Y, Guo J, Tyson GW, Hu S, Yuan Z. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ Sci Technol. 2019;53(13):7371–9.

    Article  CAS  Google Scholar 

  164. Eregowda T, Matanhike L, Rene ER, Lens PN. Performance of a biotrickling filter for the anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids production. Bioresour Technol. 2018;263:591–600.

    Article  CAS  Google Scholar 

  165. Solon K, Volcke EI, Spérandio M, van Loosdrecht MC. Resource recovery and wastewater treatment modelling. Environ Sci Water Res Technol. 2019;5:631–42.

    Article  CAS  Google Scholar 

  166. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J. Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev. 2018;90:570–82.

    Article  CAS  Google Scholar 

  167. Angenent LT, Usack JG, Xu J, Hafenbradl D, Posmanik R, Tester JW. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour Technol. 2018;247:1085–94.

    Article  CAS  Google Scholar 

  168. De Vrieze J, Arends JB, Verbeeck K, Gildemyn S, Rabaey K. Interfacing anaerobic digestion with (bio)electrochemical systems: potentials and challenges. Water Res. 2018;146:244–55. https://doi.org/10.1016/j.watres.2018.08.045.

    Article  CAS  Google Scholar 

  169. Fuess LT, Klein BC, Chagas MF, Rezende MCAF, Garcia ML, Bonomi A, Zaiat M. Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: an integrated techno-economic and environmental approach. Renew Energy. 2018;122:674–87.

    Article  CAS  Google Scholar 

  170. Xin X, Ma Y, Liu Y. Electric energy production from food waste: microbial fuel cells versus anaerobic digestion. Bioresour Technol. 2018;255:281–7.

    Article  CAS  Google Scholar 

  171. Batstone DJ, Hülsen T, Mehta CM, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere. 2015;140:2–11.

    Article  CAS  Google Scholar 

  172. Demichelis F, Fiore S, Pleissner D, Venus J. Technical and economic assessment of food waste valorization through a biorefinery chain. Renew Sustain Energy Rev. 2018;94:38–48.

    Article  Google Scholar 

  173. Li RH, Cui JL, Li XD, Li XY. Phosphorus removal and recovery from wastewater using Fe-dosing bioreactor and cofermentation: investigation by X-ray absorption near-edge structure spectroscopy. Environ Sci Technol. 2018;52(24):14119–28.

    Article  CAS  Google Scholar 

  174. Knoop C, Tietze M, Dornack C, Raab T. Fate of nutrients and heavy metals during two-stage digestion and aerobic post-treatment of municipal organic waste. Bioresour Technol. 2018;251:238–48.

    Article  CAS  Google Scholar 

  175. Cucina M, Tacconi C, Ricci A, Pezzolla D, Sordi S, Zadra C, Gigliotti G. Evaluation of benefits and risks associated with the agricultural use of organic wastes of pharmaceutical origin. Sci Total Environ. 2018;613:773–82.

    Article  CAS  Google Scholar 

  176. Wallace JS, Garner E, Pruden A, Aga DS. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ Pollut. 2018;236:764–72.

    Article  CAS  Google Scholar 

  177. Sun W, Gu J, Wang X, Qian X, Peng H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour Technol. 2019;274:287–95.

    Article  CAS  Google Scholar 

  178. Kennedy CA, Stewart I, Facchini A, Cersosimo I, Mele R, Chen B, Dubeux C. Energy and material flows of megacities. Proc Natl Acad Sci. 2015;112(19):5985–90.

    Article  CAS  Google Scholar 

  179. Liu G, Hao Y, Dong L, Yang Z, Zhang Y, Ulgiati S. An emergy-LCA analysis of municipal solid waste management. Resour Conserv Recycl. 2017;120:131–43.

    Article  Google Scholar 

  180. Karak T, Bhagat RM, Bhattacharyya P. Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol. 2012;42(15):1509–630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan W. C. Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsui, TH., Wong, J.W.C. A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Dispos. Sustain. Energy 1, 151–167 (2019). https://doi.org/10.1007/s42768-019-00013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-019-00013-z

Keywords

Navigation