A review of phosphorus recovery from different thermal treatment products of sewage sludge

A Correction to this article was published on 29 January 2020

This article has been updated

Abstract

Phosphorus (P) is an indispensable element of living organisms and plays an irreplaceable role in the growth of crops. As a non-renewable element, the reserves of phosphorus rock, the primary source of phosphorus in nature, are facing the danger of exhaustion. As a phosphorus-rich solid waste, sewage sludge has gradually become a main renewable phosphorus resource. The combination of effective recycling of phosphorus and innocuous disposal of sewage sludge can not only alleviate the crisis of phosphate rock resources shortage but also reduce the environmental hazards of sewage sludge. This study reviewed the application of thermal treatment in sewage sludge disposal. Besides the advantages of reducing waste volume, decomposing organic pollutants, generating valuable byproducts, it can also significantly promote the recycling of phosphorus. Studies have shown that thermal treatment (incineration, pyrolysis, and hydrothermal) can enrich phosphorus in the products and transform the speciation of phosphorus to increase the bioavailability. The physical and chemical properties of different thermal treatment products and the speciation of phosphorus are different. The transformation and migration of phosphorus affect the efficiency of subsequent phosphorus recovery and reuse. At the same time, this study compared several general phosphorus recovery methods (wet extraction, thermochemical, and electrochemical methods), and further summarized the advantages and disadvantages of various methods and application conditions. This review summarizes recent advances in phosphorus recovery from sewage sludge, identifies challenges and knowledge gaps, and provides the foundation for future research aimed at achieving efficient, economic, and eco-friendly reclamation of phosphorus in sewage sludge.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Change history

  • 29 January 2020

    The authors wish to make the following corrections to this paper : 1.

  • 29 January 2020

    The authors wish to make the following corrections to this paper : 1.

References

  1. 1.

    Desmidt E, Ghyselbrecht K, Zhang Y, et al. Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol. 2015;45(4):336–84.

    CAS  Google Scholar 

  2. 2.

    Cordell D, Drangert JO, White S. The story of phosphorus: global food security and food for thought. Global Environ Change. 2009;19(2):305.

    Google Scholar 

  3. 3.

    De-Bashan LE. Bashan, recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004;38:4222–46.

    CAS  Google Scholar 

  4. 4.

    SøRensen BL, Dall OL, Habib K. Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manag. 2015;45:391–9.

    Google Scholar 

  5. 5.

    Liu Y, Villalba G, Ayres RU, et al. Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol. 2008;12(2):229–47.

    CAS  Google Scholar 

  6. 6.

    Chowdhury RB, Moore GA, Weatherley AJ, et al. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl. 2014;83:213–28.

    Google Scholar 

  7. 7.

    Koppelaar RHEM, Weikard HP. Assessing phosphate rock depletion and phosphorus recycling options. Glob Environ Change. 2013;23(6):1454–66.

    Google Scholar 

  8. 8.

    Suh S, Yee S. Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere. 2011;84(6):806–13.

    CAS  Google Scholar 

  9. 9.

    Dawson CJ, Hilton J. Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy. 2012;36(1):S14–22.

    Google Scholar 

  10. 10.

    Mineral Commodity Summaries 2019. In: Tolcin AC, editor. Mineral Commodity Summaries, Reston, VA; 2019. https://doi.org/10.3133/70202434.

  11. 11.

    Shepherd JG, Kleemann R, Bahri-Esfahani J, et al. The future of phosphorus in our hands. Nutr Cycl Agroecosyst. 2016;104(3):281–7.

    CAS  Google Scholar 

  12. 12.

    Cordell D, Rosemarin A, Schrder JJ, et al. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84(6):747–58.

    CAS  Google Scholar 

  13. 13.

    Cieślik B, Konieczka P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J Clean Prod. 2017;142:1728–40.

    Google Scholar 

  14. 14.

    Fonts I, Gea G, Azuara M, et al. Sewage sludge pyrolysis for liquid production: a review. Renew Sustain Energy Rev. 2012;16(5):2781–805.

    CAS  Google Scholar 

  15. 15.

    Herzel H, Krüger O, Hermann L, et al. Sewage sludge ash—a promising secondary phosphorus source for fertilizer production. Sci Total Environ. 2016;542(Pt B):1136–43.

    CAS  Google Scholar 

  16. 16.

    Lo IMC, Zhou WW, Lee KM. Geotechnical characterization of dewatered sewage sludge for landfill. Revue Canadienne De Géotechnique. 2002;39(5):1139–49.

    Google Scholar 

  17. 17.

    Raheem A, Sikarwar VS, He J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem Eng J. 2017;337:616–41.

    Google Scholar 

  18. 18.

    Wu MH, Lin CL, Huang WC, et al. Characteristics of pervious concrete using incineration bottom ash in place of sandstone graded material. Constr Build Mater. 2016;111:618–24.

    CAS  Google Scholar 

  19. 19.

    Samolada MC, Zabaniotou AA. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. 2014;34(2):411–20.

    CAS  Google Scholar 

  20. 20.

    Frišták V, Pipíška M, Soja G. Pyrolysis treatment of sewage sludge: a promising way to produce phosphorus fertilizer. J Clean Prod. 2018;172:1772–8.

    Google Scholar 

  21. 21.

    Lehmann J, Joseph S. Biochar for environmental management science. Technol Implement. 2015;25:15801–11. https://doi.org/10.4324/9780203762264.

    Article  Google Scholar 

  22. 22.

    Huang R, Fang C, Lu X, et al. Transformation of phosphorus during (Hydro)thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling. Environ Sci Technol. 2017;51(18):10284–98.

    CAS  Google Scholar 

  23. 23.

    Huang R, Tang Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ Sci Technol. 2015;49:14466–74.

    CAS  Google Scholar 

  24. 24.

    Xue X, Chen D, Song X, et al. Hydrothermal and pyrolysis treatment for sewage sludge: choice from product and from energy benefit. Energy Proc. 2015;66:301–4.

    CAS  Google Scholar 

  25. 25.

    Carbonell G, Pro J, Gómez N, et al. Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf. 2009;72(4):1319.

    Google Scholar 

  26. 26.

    Laturnus F, von Arnold K, Grøn C. Organic contaminants from sewage sludge applied to agricultural soils. False alarm regarding possible problems for food safety? Environ Sci Pollut Res. 2007;14:53–60.

    CAS  Google Scholar 

  27. 27.

    Harrison EZ, Oakes SR, Hysell M, et al. Organic chemicals in sewage sludges. Sci Total Environ. 2006;367(2–3):481–97.

    CAS  Google Scholar 

  28. 28.

    Suciu NA, Lamastra L, Trevisan M. PAHs content of sewage sludge in Europe and its use as soil fertilizer. Waste Manag. 2015;41:119–27.

    CAS  Google Scholar 

  29. 29.

    Tarayre C, Clercq LD, Charlier R, et al. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Biores Technol. 2016;206:264–74.

    CAS  Google Scholar 

  30. 30.

    Zhou K, Barjenbruch M, Kabbe C, et al. Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. J Environ Sci. 2016;52:10.

    CAS  Google Scholar 

  31. 31.

    Hartman M, Svoboda K, Pohořely M, et al. Combustion of dried sewage sludge in a fluidized-bed reactor. Ind Eng Chem Res. 2005;44(10):3432–41.

    CAS  Google Scholar 

  32. 32.

    Hossain MK, Strezov V, Chan KY, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage. 2011;92(1):223–8.

    CAS  Google Scholar 

  33. 33.

    Belevi H, Langmeier M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environ Sci Technol. 2000;34(12):2507–12.

    CAS  Google Scholar 

  34. 34.

    Wang T, Camps-Arbestain M, Hedley M, et al. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil. 2012;357(1–2):173–87.

    CAS  Google Scholar 

  35. 35.

    Guedes P, Couto N, Ottosen LM, et al. Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Manag. 2014;34(5):886–92.

    CAS  Google Scholar 

  36. 36.

    Pettersson A, Amand LE, Steenari BM. Leaching of ashes from co-combustion of sewage sludge and wood—Part I: recovery of phosphorus. Biomass Bioenerg. 2008;32(3):224–35.

    CAS  Google Scholar 

  37. 37.

    Biswas BK, Harada H, Ohto K, et al. Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci. 2009;21(12):1753–60.

    CAS  Google Scholar 

  38. 38.

    Ottosen LM, Kirkelund GM. Jensen, Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemophere. 2013;91:963–9.

    CAS  Google Scholar 

  39. 39.

    Weigand H, Bertau M, Hübner W, et al. RecoPhos: full-scale fertilizer production from sewage sludge ash. Waste Manag. 2013;33(3):540–4.

    CAS  Google Scholar 

  40. 40.

    Couto N, Guedes P, Ferreira AR, et al. Electrodialytic process of nanofiltration concentrates—phosphorus recovery and microcystins removal. Electrochim Acta. 2015;181:200–7.

    CAS  Google Scholar 

  41. 41.

    Takahashi M, Kato S, Shima H, et al. Technology for recovering phosphorus from incinerated wastewater treatment sludge. Chemosphere. 2001;44(1):23–9.

    CAS  Google Scholar 

  42. 42.

    Wang Q, Li J-S, Tang P, et al. Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. J Clean Prod. 2018;181:717–25.

    CAS  Google Scholar 

  43. 43.

    Li R, Zhang Z, Li Y, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge. Chemosphere. 2015;141:57–61.

    CAS  Google Scholar 

  44. 44.

    Adam C, Peplinski B, Michaelis M, et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 2009;29(3):1122–8.

    CAS  Google Scholar 

  45. 45.

    Donatello S. Characteristics of incinerated sewage sludge ashes: potential for pozzolanic material in construction products. Imp Coll Lond. 2009. https://doi.org/10.13140/RG.2.2.33926.63040.

    Article  Google Scholar 

  46. 46.

    Petzet S, Peplinski B, Cornel P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 2012;46(12):3769–80.

    CAS  Google Scholar 

  47. 47.

    Wzorek Z, Jodko M, Gorazda K, et al. Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J Loss Prev Process Ind. 2006;19(1):39–50.

    Google Scholar 

  48. 48.

    Thygesen AM, Wernberg O, Skou E, et al. Effect of incineration temperature on phosphorus availability in bio-ash from manure. Environ Technol. 2011;32(6):633–8.

    CAS  Google Scholar 

  49. 49.

    Nakakubo T, Tokai A, Ohno K. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. J Clean Prod. 2012;32:157–72.

    CAS  Google Scholar 

  50. 50.

    Yuan Z, Pratt S, Batstone DJ. Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol. 2012;23(6):878–83.

    CAS  Google Scholar 

  51. 51.

    Zhang L, Ninomiya Y. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. Proc Combust Inst. 2007;31(2):2847–54.

    Google Scholar 

  52. 52.

    Zhao Y, Ren Q, Na Y. Promotion of cotton stalk on bioavailability of phosphorus in municipal sewage sludge incineration ash. Fuel. 2018;214:351–5.

    CAS  Google Scholar 

  53. 53.

    Ren Q, Li L. Co-combustion of agricultural straw with municipal sewage sludge in a fluidized bed: role of phosphorus in potassium behavior. Energy Fuels. 2015;29(7):4321–7.

    CAS  Google Scholar 

  54. 54.

    Beck J, Unterberger S. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel. 2006;85(10):1541–9.

    CAS  Google Scholar 

  55. 55.

    Han J, Kanchanapiya P, Sakano T, et al. The behaviour of phosphorus and heavy metals in sewage sludge ashes. Int J Environ Pollut. 2009;37(4):357.

    CAS  Google Scholar 

  56. 56.

    Saleh Bairq ZA, Li R, Li Y, et al. New advancement perspectives of chloride additives on enhanced heavy metals removal and phosphorus fixation during thermal processing of sewage sludge. J Clean Prod. 2018;188:185–94.

    CAS  Google Scholar 

  57. 57.

    Feng H, Zheng M, Dong H, et al. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. J Mater Chem A. 2015;3:15225–34.

    CAS  Google Scholar 

  58. 58.

    Liu XQ, Ding HS, Wang YY, et al. Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-Naphthol. Environ Sci Technol. 2016;50:536.

    Google Scholar 

  59. 59.

    Yuan S-J, Dai X-H. Heteroatom-doped porous carbon derived from “all-in-one” precursor sewage sludge for electrochemical energy storage. RSC Adv. 2015;5:45827–35.

    CAS  Google Scholar 

  60. 60.

    Zhang J, Lü F, Zhang H, et al. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Sci Rep. 2015;5:9406.

    CAS  Google Scholar 

  61. 61.

    Azuara M, Kersten SRA, Kootstra AMJ. Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass Bioenerg. 2013;49:171–80.

    CAS  Google Scholar 

  62. 62.

    Bridle TR, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol. 2004;50(9):169–75.

    CAS  Google Scholar 

  63. 63.

    Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy. 2011;36(5):2328–42.

    CAS  Google Scholar 

  64. 64.

    Kruse A. Hydrothermal biomass gasification. J Supercrit Fluids. 2009;47(3):391–9.

    CAS  Google Scholar 

  65. 65.

    Libra JA, Ro KS, Kammann C, et al. Kern, Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2:71–106.

    CAS  Google Scholar 

  66. 66.

    Uchimiya M, Hiradate S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J Agric Food Chem. 2014;62(8):1802–9.

    CAS  Google Scholar 

  67. 67.

    Xu G, Zhang Y, Shao H, et al. Pyrolysis temperature affects phosphorus transformation in biochar: chemical fractionation and 31P NMR analysis. Sci Total Environ. 2016;569–570:65–72.

    Google Scholar 

  68. 68.

    Meng X, Huang Q, Gao H, et al. Improved utilization of phosphorous from sewage sludge (as fertilizer) after treatment by low-temperature combustion. Waste Manag. 2018;80:349–58.

    CAS  Google Scholar 

  69. 69.

    Uchimiya M, Hiradate S, Antal MJ. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. ACS Sustain Chem Eng. 2015;3(7):1642–9.

    CAS  Google Scholar 

  70. 70.

    Bläsing M, Zini M, Müller MJE. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells. Energy Fuels. 2013;2013(27):1439–45.

    Google Scholar 

  71. 71.

    Bourgel C, Véron E, Poirier J, et al. Behavior of phosphorus and other inorganics during the gasification of sewage sludge. Energy Fuels. 2011;25(12):5707–17.

    CAS  Google Scholar 

  72. 72.

    Qian TT, Li DC, Jiang H. Thermochemical Behavior of Tris(2-Butoxyethyl) Phosphate (TBEP) during Co-pyrolysis with Biomass. Environ Sci Technol. 2014;48(18):10734–42.

    CAS  Google Scholar 

  73. 73.

    Liu J, Yang J, Cade-Menun BJ, et al. Complementary phosphorus speciation in agricultural soils by sequential fractionation, solution P nuclear magnetic resonance, and phosphorus K-edge X-ray absorption near-edge structure spectroscopy. J Environ Qual. 2013;42:1763–70.

    CAS  Google Scholar 

  74. 74.

    Nanzer S, Oberson A, Huthwelker T, et al. The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. J Environ Qual. 2014;43(3):1050.

    Google Scholar 

  75. 75.

    Qian TT, Jiang H. Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain Chem Eng. 2014;2(6):1411–9.

    CAS  Google Scholar 

  76. 76.

    Wisawapipat W, Charoensri K, Runglerttrakoolchai J. Solid-phase speciation and solubility of phosphorus in an acid sulfate paddy soil during soil reduction and reoxidation as affected by oil palm ash and biochar. J Agric Food Chem. 2017;65(4):704–10.

    CAS  Google Scholar 

  77. 77.

    Huang R, Tang Y. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES. Water Res. 2016;100:439–47.

    CAS  Google Scholar 

  78. 78.

    Kleemann R, Chenoweth J, Clift R, et al. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Manag. 2017;60:201–10.

    CAS  Google Scholar 

  79. 79.

    Adnan A, Karin HA, Gerhard S, et al. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Front Plant Sci. 2015;6:529.

    Google Scholar 

  80. 80.

    Frišták V, Soja G. Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechmologica et Chimica. 2015;14(1):104–15. https://doi.org/10.1515/nbec-2015-0020.

    CAS  Article  Google Scholar 

  81. 81.

    Karer J, Wawra A, Zehetner F, et al. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water Air Soil Pollut. 2015;226(10):342.

    Google Scholar 

  82. 82.

    Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 2012;38:68–94.

    CAS  Google Scholar 

  83. 83.

    Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin. 2010;4(2):160–77.

    CAS  Google Scholar 

  84. 84.

    Zumbühl K. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: a feasibility study on a laboratory scale. Fuels. 2013;27:454–60.

    Google Scholar 

  85. 85.

    Maria-Magdalena T, Markus AJCSR. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev. 2009;39:103–16.

    Google Scholar 

  86. 86.

    Titirici MM, White RJ, Falco C, et al. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci. 2012;5(5):6796.

    Google Scholar 

  87. 87.

    Valdez PJ, Nelson MC, Wang HY, et al. Hydrothermal liquefaction of Nannochloropsis sp.: systematic study of process variables and analysis of the product fractions. Biomass Bioenerg. 2012;46:317–31.

    CAS  Google Scholar 

  88. 88.

    Pavlovic I, Knez Z, Skerget, Mojca A. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms and state of research. J Agric Food Chem 2013;61(34):8003–8025.

    Google Scholar 

  89. 89.

    Funke A, Ziegler F. Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresour Technol. 2011;102(16):7595–8.

    CAS  Google Scholar 

  90. 90.

    Vom Eyser C, Palmu K, Otterpohl R, et al. Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies. Anal Bioanal Chem. 2015;407(3):821–30.

    Google Scholar 

  91. 91.

    Vom Eyser C, Palmu K, Schmidt TC, et al. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization. Sci Total Environ. 2015;537:180–6.

    Google Scholar 

  92. 92.

    Heilmann SM, Jader LR, Harned LA, et al. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy. 2011;88(10):3286–90.

    CAS  Google Scholar 

  93. 93.

    Heilmann SM, Jader LR, Sadowsky MJ, et al. Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy. 2011;35(7):2526–33.

    CAS  Google Scholar 

  94. 94.

    Heilmann SM, Molde JS, Timler JG, et al. Phosphorus reclamation through hydrothermal carbonization of animal manures. Environ Sci Technol. 2014;48:10323–9.

    CAS  Google Scholar 

  95. 95.

    Zhu W, Xu ZR, Li L, et al. The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge. Chem Eng J. 2011;171(1):190–6.

    CAS  Google Scholar 

  96. 96.

    Shi W, Liu C, Ding D, et al. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Biores Technol. 2013;137:18–24.

    CAS  Google Scholar 

  97. 97.

    Bright DA, Healey N. Contaminant risks from biosolids land application—contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia. Environ Pollut. 2003;126(1):39–49.

    CAS  Google Scholar 

  98. 98.

    Cordell D, Rosemarin A, Schrder JJ, et al. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84(6):747–58.

    CAS  Google Scholar 

  99. 99.

    Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resour Effic Technol. 2016;2(4):175–84.

    Google Scholar 

  100. 100.

    Sartorius C, von Horn J, Tettenborn F. Tettenborn, Phosphorus recovery from wastewater–expert survey on present use and future potential. Water Environ Res. 2012;84:313–22.

    CAS  Google Scholar 

  101. 101.

    Egle L, Rechberger H, Zessner M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl. 2015;105:S0921344915300938.

    Google Scholar 

  102. 102.

    Rittmann BE, Brooke M, Paul W, et al. Capturing the lost phosphorus. Chemosphere. 2011;84(6):846–53.

    CAS  Google Scholar 

  103. 103.

    Hunger S, Sims JT, Sparks DL. How accurate is the assessment of phosphorus pools in poultry litter by sequential extraction? J Environ Qual. 2005;34(1):382.

    CAS  Google Scholar 

  104. 104.

    Donatello S, Cheeseman CR. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 2013;33(11):2328–40.

    CAS  Google Scholar 

  105. 105.

    Donatello S, Tong D, Cheeseman C. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Manag. 2010;30(8):1634–42.

    CAS  Google Scholar 

  106. 106.

    Fang L, Li JS, Donatello S, et al. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem Eng J. 2018;348:74–83.

    CAS  Google Scholar 

  107. 107.

    Fang L, Li JS, Guo MZ, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere. 2018;193:278–87.

    CAS  Google Scholar 

  108. 108.

    Franz M. Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag. 2007;28(10):1809–18.

    Google Scholar 

  109. 109.

    Li JS, Chen Z, Wang QM, et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Manag. 2018;74:72.

    Google Scholar 

  110. 110.

    Stasta P, Boran J, Bebar L, et al. Thermal processing of sewage sludge. Appl Therm Eng. 2006;26(13):1420–6.

    CAS  Google Scholar 

  111. 111.

    Li Y, Cui R, Yang T, et al. Distribution characteristics of heavy metals in different size fly ash from a sewage sludge circulating fluidized bed incinerator. Energy Fuels. 2017;31(2):2044–51.

    CAS  Google Scholar 

  112. 112.

    Petzet S, Peplinski B, Bodkhe SY, et al. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Sci Technol. 2011;64(3):693.

    CAS  Google Scholar 

  113. 113.

    Stark K, Plaza E, Hultman B. Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere. 2006;62(5):832.

    Google Scholar 

  114. 114.

    Levlin E, Hultman B. Phosphorus recovery from sewage sludge-Ideas for further studies to improve leaching. Stockholm, Sweden: Department of Land and Water Resources Engineering; 2004. p. 61–77.

    Google Scholar 

  115. 115.

    Li M, Tang Y, Lu XY, et al. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation. Water Res. 2018;140:90.

    CAS  Google Scholar 

  116. 116.

    Ye Y, Ngo HH, Guo W, et al. Insight into chemical phosphate recovery from municipal wastewater. Sci Total Environ. 2017;576:159–71.

    CAS  Google Scholar 

  117. 117.

    Antonini S, Arias MA, Eichert T, et al. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere. 2012;89(10):1202–10.

    CAS  Google Scholar 

  118. 118.

    César P, Rafael S, Cristina C, et al. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J Agric Food Chem. 2007;55(20):8206–12.

    Google Scholar 

  119. 119.

    Ryu HD, Lim CS, Kang MK, Lee S. Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. J Hazard Mater. 2012;221:248–55.

    Google Scholar 

  120. 120.

    Yu Y, Lei Z, Yuan T, et al. Simultaneous phosphorus and nitrogen recovery from anaerobically digested sludge using a hybrid system coupling hydrothermal pretreatment with MAP precipitation. Biores Technol. 2017;243:634.

    CAS  Google Scholar 

  121. 121.

    Kataki S, West H, Clarke M, et al. Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recyc. 2016;107:142–56.

    Google Scholar 

  122. 122.

    Shu L, Schneider P, Jegatheesan V, et al. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Biores Technol. 2006;97(17):2211–6.

    CAS  Google Scholar 

  123. 123.

    Yan H, Shih K. Effects of calcium and ferric ions on struvite precipitation: a new assessment based on quantitative X-ray diffraction analysis. Water Res. 2016;95:310–8.

    CAS  Google Scholar 

  124. 124.

    Corre KSL, Valsami-Jones E, Hobbs P, et al. Impact of calcium on struvite crystal size, shape and purity. J Cryst Growth. 2005;283(3–4):514–22.

    Google Scholar 

  125. 125.

    Muryanto S, Bayuseno AP. Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technol. 2014;253:602–7.

    CAS  Google Scholar 

  126. 126.

    Xu H, He P, Gu W, et al. Recovery of phosphorus as struvite from sewage sludge ash. J Environ Sci. 2012;24:1533–8.

    CAS  Google Scholar 

  127. 127.

    Pastor L, Marti N, Bouzas A, et al. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Biores Technol. 2008;99(11):4817–24.

    CAS  Google Scholar 

  128. 128.

    Ohbuchi A, Sakamoto J, Kitano M, et al. X-ray fluorescence analysis of sludge ash from sewage disposal plant. X-Ray Spectrom. 2008;37(5):544–50.

    CAS  Google Scholar 

  129. 129.

    Adam C, Kley G. Simon, thermal treatment of municipal sewage sludge aiming at marketable P-fertilisers. Mater Trans. 2007;48(12):3056–61.

    CAS  Google Scholar 

  130. 130.

    Vogel C, Adam C. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid. Environ Sci Technol. 2011;45(17):7445–50.

    CAS  Google Scholar 

  131. 131.

    Fraissler G, JöLler M, Mattenberger H, et al. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process. 2009;48(1):152–64.

    CAS  Google Scholar 

  132. 132.

    Havukainen J, Mai TN, Hermann L, et al. Linnanen, Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016;49:221–9.

    CAS  Google Scholar 

  133. 133.

    Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I. Sewage sludge ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment. Waste Manag. 2008;28:2709–22.

    CAS  Google Scholar 

  134. 134.

    Kleemann R, Morse S. Sustainable phosphorus management—a global transdisciplinary roadmap In: Scholz RW, Roy A, Brand FS, et al. ISBN: 978-94-007-7249-6. Ecol Econ. 2015;114(3):245–246.

  135. 135.

    Adam C, Michaelis M, Kley G, et al. Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction—a contribution to the European project SUSAN. Zeitschrift Für Kristallographie Supplements. 2009;2009(30):459–64.

    Google Scholar 

  136. 136.

    Vogel C, Adam C, Peplinski B, et al. Chemical reactions during the preparation of P and NPK fertilizers from thermochemically treated sewage sludge ashes. Soil Sci Plant Nutr. 2010;56(4):627–35.

    CAS  Google Scholar 

  137. 137.

    Jan S, Burkhard P, Christian AJWM. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production—analysis of underlying chemical reactions. Waste Manag. 2015;45:385–90.

    Google Scholar 

  138. 138.

    Vogel C, Krüger O, Adam C. Thermochemical treatment of sewage sludge ash with sodium additives under reducing conditions analyzed by thermogravimetry. J Therm Anal Calorim. 2016;123(2):1045–51.

    CAS  Google Scholar 

  139. 139.

    Steckenmesser D, Vogel C, Adam C, et al. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance. Waste Manag. 2017;62:194–203.

    CAS  Google Scholar 

  140. 140.

    Acar YB, Alshawabkeh AN. Principles of electrokinetic remediation. Environ Sci Technol. 1993;27:2638–47.

    CAS  Google Scholar 

  141. 141.

    Viader RP, Jensen PE, Ottosen LM, et al. Sequential electrodialytic recovery of phosphorus from low-temperature gasification ashes of chemically precipitated sewage sludge. Waste Manag. 2016;60:211–8.

    Google Scholar 

  142. 142.

    Jakobsen MR, Fritt-Rasmussen J, Nielsen S, et al. Electrodialytic removal of cadmium from wastewater sludge. J Hazard Mater. 2004;106(2–3):127–32.

    CAS  Google Scholar 

  143. 143.

    Ottosen LM, Jensen PE, Kirkelund GM. Electrodialytic separation of phosphorus and heavy metals from two types of sewage sludge ash. Sep Sci Technol. 2014;49(12):1910–20.

    CAS  Google Scholar 

  144. 144.

    Ottosen LM, Pedersen AJ, Hansen HK, et al. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta. 2007;52(10):3420–6.

    CAS  Google Scholar 

  145. 145.

    Nystroem GM, Ottosen LM, Villumsen A. Acidification of harbor sediment and removal of heavy metals induced by water splitting in electrodialytic remediation. Sep Sci Technol. 2005;40(11):2245–64.

    CAS  Google Scholar 

  146. 146.

    Ebbers B, Ottosen LM, Jensen PE. Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash. Chemosphere. 2015;125:122–9.

    CAS  Google Scholar 

  147. 147.

    Viader RP, Jensen PE, Ottosen LM, et al. Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge. Electrochim Acta. 2015;181:100–8.

    Google Scholar 

  148. 148.

    Guedes P, Mateus EP, Almeida J, et al. Electrodialytic treatment of sewage sludge: current intensity influence on phosphorus recovery and organic contaminants removal. Chem Eng J. 2016;306:1058–66.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51621005) and Key research and development plan of the Yunnan Science and Technology Department (2018IB026). The authors declare no competing financial interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qunxing Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Huang, Q., Xu, J. et al. A review of phosphorus recovery from different thermal treatment products of sewage sludge. Waste Dispos. Sustain. Energy 1, 99–115 (2019). https://doi.org/10.1007/s42768-019-00007-x

Download citation

Keywords

  • Sewage sludge
  • Thermal treatment
  • Phosphorus recovery