Skip to main content
Log in

Chemical Modification of Silk Proteins: Current Status and Future Prospects

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Silk extracted from the cocoon of silkworm has been used as textile materials for thousands of years. Recently, silk has been redefined as a protein-based biomaterial with great potential in biomedical applications owing to its excellent mechanical properties, biocompatibility, and biodegradability. With the advances in silk processing technologies, a broad range of intriguing silk-based functional biomaterials have been made and applied for various biomedical uses. However, most of these materials are based on natural silk proteins without chemical modification, leading to limited control of properties and functions (e.g., biodegradability and bioactivity). A chemical toolbox for modifying the silk proteins is required to achieve versatile silk-based materials with precisely designed properties or functions for different applications. Furthermore, inspired by the traditional fine chemical industry based on synthetic chemistry, developing silk-based fine chemicals with special functions can significantly extend the applications of silk materials, particularly in biomedical fields. This review summarizes the recent progress on chemical modification of silk proteins, focusing on the methodologies and applications. We also discuss the challenges and opportunities of these chemically modified silk proteins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang NF, Chen JJ. 7,000 year of Chinese silk science and technology, 1st ed. Beijing: Chinese textile Press; 2002.

    Google Scholar 

  2. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329:528.

    Article  CAS  Google Scholar 

  3. Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 2016;31:17.

    Article  CAS  Google Scholar 

  4. Guo C, Li C, Mu X, Kaplan DL. Engineering silk materials: from natural spinning to artificial processing. Appl Phys Rev 2020;7:011313.

    Article  CAS  Google Scholar 

  5. Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, fabrication, and function of silk-based nanomaterials. Adv Funct Mater 2018;28:1805305.

    Article  CAS  Google Scholar 

  6. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65:457.

    Article  CAS  Google Scholar 

  7. Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a biomaterial to support long-term three-dimensional tissue cultures. ACS Appl Mater Interfaces 2016;8:21861.

    Article  CAS  Google Scholar 

  8. Asakura T, Okushita K, Williamson MP. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 2015;48:2345.

    Article  CAS  Google Scholar 

  9. Hardy JG, Römer LM, Scheibel TR. Polymeric materials based on silk proteins. Polymer 2008;49:4309.

    Article  CAS  Google Scholar 

  10. Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 2015;11:1039.

    Article  CAS  Google Scholar 

  11. Guo C, Zhang J, Jordan JS, Wang X, Henning RW, Yarger JL. Structural comparison of various silkworm silks: an insight into the structure-property relationship. Biomacromol 2018;19:906.

    Article  CAS  Google Scholar 

  12. Guo C, Zhang J, Wang X, Nguyen AT, Liu XY, Kaplan DL. Comparative study of strain-dependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small 2017;13:1702266.

    Article  CAS  Google Scholar 

  13. Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2019;5:61.

    Article  Google Scholar 

  14. Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018;47:6486.

    Article  CAS  Google Scholar 

  15. Asakura T, Suzuki Y, Nakazawa Y, Holland GP, Yarger JL. Elucidating silk structure using solid-state NMR. Soft Matter 2013;9:11440.

    Article  CAS  Google Scholar 

  16. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007;32:991.

    Article  CAS  Google Scholar 

  17. Guo C, Li C, Kaplan DL. Enzymatic degradation of Bombyx mori silk materials: a review. Biomacromol 2020;21:1678.

    Article  CAS  Google Scholar 

  18. Peter P. Fine chemicals: the industry and the business, 2nd ed. New Jersey: John Wiley and Sons; 2011.

    Google Scholar 

  19. Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev 2012;41:1538.

    Article  CAS  Google Scholar 

  20. Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011;6:1612.

    Article  CAS  Google Scholar 

  21. Chen J, Venkatesan H, Hu J. Chemically modified silk proteins. Adv Eng Mater 2018;20:1700961.

    Article  CAS  Google Scholar 

  22. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res Part B 2011;99:89.

    Article  CAS  Google Scholar 

  23. Kim HJ, Kim MK, Lee KH, Nho SK, Han MS, Um IC. Effect of degumming methods on structural characteristics and properties of regenerated silk. Int J Biol Macromol 2017;104:294.

    Article  CAS  Google Scholar 

  24. Freddi G, Mossotti R, Innocenti R. Degumming of silk fabric with several proteases. J Biotechnol 2003;106:101.

    Article  CAS  Google Scholar 

  25. Rahman M, Bhowmik A, Das S, Chowhan K, Biswas T. Green degumming of silk by enzyme extracted from natural sources. J Mater Sci Chem Eng 2020;8:30.

    CAS  Google Scholar 

  26. Vyas SK, Shukla SR. Comparative study of degumming of silk varieties by different techniques. J Text Inst 2015;107:191.

    Article  CAS  Google Scholar 

  27. Kundu B, Kurland NE, Yadavalli VK, Kundu SC. Isolation and processing of silk proteins for biomedical applications. Int J Biol Macromol 2014;70:70.

    Article  CAS  Google Scholar 

  28. Yamada H, Nakao H, Takasu Y, Tsubouchi K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater Sci Eng C 2001;14:41.

    Article  Google Scholar 

  29. Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA. Structure and solubility of natural silk fibroin. Russ J Appl Chem 2006;79:869.

    Article  CAS  Google Scholar 

  30. Wang HY, Zhang YQ. Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter 2013;9:138.

    Article  CAS  Google Scholar 

  31. Mahmoodi NM, Arami M, Mazaheri F, Rahimi S. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 2010;18:146.

    Article  CAS  Google Scholar 

  32. Sah MK, Kumar AKP. The extraction of fibroin protein from Bombyx mori silk cocoon: optimization of process parameters. Int J Bioinf Res 2010;2:33.

    Article  Google Scholar 

  33. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 2001;44:119.

    Article  CAS  Google Scholar 

  34. Ha SW, Gracz HS, Tonelli AE, Hudson SM. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromol 2005;6:2563.

    Article  CAS  Google Scholar 

  35. Katashima T, Malay AD, Numata K. Chemical modification and biosynthesis of silk-like polymers. Curr Opin Chem Eng 2019;24:61.

    Article  Google Scholar 

  36. Zheng K, Chen Y, Huang W, Lin Y, Kaplan DL, Fan Y. Chemically functionalized silk for human bone marrow-derived mesenchymal stem cells proliferation and differentiation. ACS Appl Mater Interfaces 2016;8:14406.

    Article  CAS  Google Scholar 

  37. Serban MA, Kaplan DL. pH-sensitive ionomeric particles obtained via chemical conjugation of silk with poly(amino acid)s. Biomacromol 2010;11:3406.

    Article  CAS  Google Scholar 

  38. Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk ionomers for layer-by-layer electrostatic deposition on individual mammalian cells. Biomacromol 2020;21:2829.

    Article  CAS  Google Scholar 

  39. Heichel DL, Burke KA. Dual-mode cross-linking enhances adhesion of silk fibroin hydrogels to intestinal tissue. ACS Biomater Sci Eng 2019;5:3246.

    Article  CAS  Google Scholar 

  40. Davarpanah S, Mahmoodi NM, Arami M, Bahrami H, Mazaheri F. Environmentally friendly surface modification of silk fiber: chitosan grafting and dyeing. Appl Surf Sci 2009;255:4171.

    Article  CAS  Google Scholar 

  41. Bruder V, Ludwig T, Opitz S, Christoffels R, Fischer T, Maleki H. Hierarchical assembly of surface modified silk fibroin biomass into micro-, and milli-metric hybrid aerogels with core-shell, janus, and composite configurations for rapid removal of water pollutants. Adv Mater Interfaces 2021;8:2001892.

    Article  CAS  Google Scholar 

  42. Sagnella A, Zambianchi M, Durso M, Posati T, Del Rio A, Donnadio A, Mazzanti A, Pistone A, Ruani G, Zamboni R, Benfenati V, Melucci M. APTES mediated modular modification of regenerated silk fibroin in a water solution. RSC Adv 2015;5:63401.

    Article  CAS  Google Scholar 

  43. Li X, Zhang C, Wang L, Ma C, Yang W, Li M. Acylation modification of Antheraea pernyi silk fibroin using succinic anhydride and its effects on enzymatic degradation behavior. J Chem 2013;640913:1.

    Google Scholar 

  44. Gotoh Y, Tsukada M, Minoura N. Chemical modification of silk fibroin with cyanuric chloride-activated poly(ethylene glycol): analyses of reaction site by proton NMR spectroscopy and conformation of the conjugates. Bioconjugate Chem 1993;4:554.

    Article  CAS  Google Scholar 

  45. Gotoh Y, Yamazaki T, Ishizuka Y, Ise H. Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes. Colloids Surf B 2021;198:111406.

    Article  CAS  Google Scholar 

  46. Gotoh Y. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials 2004;25:1131.

    Article  CAS  Google Scholar 

  47. Murphy AR, St John P, Kaplan DL. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 2008;29:2829.

    Article  CAS  Google Scholar 

  48. Zhao H, Heusler E, Jones G, Li L, Werner V, Germershaus O, Ritzer J, Luehmann T, Meinel L. Decoration of silk fibroin by click chemistry for biomedical application. J Struct Biol 2014;186:420.

    Article  CAS  Google Scholar 

  49. Santi S, Mancini I, Dire S, Callone E, Speranza G, Pugno N, Migliaresi C, Motta A. A bio-inspired multifunctionalized silk fibroin. ACS Biomater Sci Eng 2021;7:507.

    Article  CAS  Google Scholar 

  50. Sampaio S, Miranda TMR, Santos JG, Soares GMB. Preparation of silk fibroin-poly(ethylene glycol) conjugate films through click chemistry. Polym Int 2011;60:1737.

    Article  CAS  Google Scholar 

  51. Romero IS, Schurr ML, Lally JV, Kotlik MZ, Murphy AR. Enhancing the interface in silk-polypyrrole composites through chemical modification of silk fibroin. ACS Appl Mater Interfaces 2013;5:553.

    Article  CAS  Google Scholar 

  52. Tamada Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 2004;25:377.

    Article  CAS  Google Scholar 

  53. Quiñones JP, Roschger C, Zierer A, Peniche C, Brüggemann O. Steroid-grafted silk fibroin conjugates for drug and agrochemical delivery. Eur Polym J 2019;119:169.

    Article  CAS  Google Scholar 

  54. Chen T, Vazquez-Duhalt R, Wu C-F, Bentley WE, Payne GF. Combinatorial screening for enzyme-mediated coupling tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromol 2001;2:456.

    Article  CAS  Google Scholar 

  55. Chen T, Embree HD, Wu LQ, Payne GF. In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 2002;64:292.

    Article  CAS  Google Scholar 

  56. Yamada K, Chen T, Kumar G, Vesnovsky O, Topoleski LDT, Payne GF. Chitosan based water-resistant adhesive analogy to mussel glue. Biomacromol 2000;1:252.

    Article  CAS  Google Scholar 

  57. Chen T, Small DA, Wu LQ, Rubloff GW, Ghodssi R, Vazquez-Duhalt R, Bentley WE, Payne GF. Nature-inspired creation of protein-polysaccharide conjugate and its subsequent assembly onto a patterned surface. Langmuir 2003;19:9382.

    Article  CAS  Google Scholar 

  58. Muzzarelli C, Muzzarelli R. Reactivity of quinones towards chitosans. Trends Glycosci Glycotechnol 2002;14:223.

    Article  CAS  Google Scholar 

  59. Monti P, Freddi G, Sampaio S, Tsukada M, Taddei P. Structure modifications induced in silk fibroin by enzymatic treatments a Raman study. J Mol Struct 2005;744–747:685.

    Article  CAS  Google Scholar 

  60. Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 2006;125:281.

    Article  CAS  Google Scholar 

  61. Sampaio S, Taddei P, Monti P, Buchert J, Freddi G. Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J Biotechnol 2005;116:21.

    Article  CAS  Google Scholar 

  62. Wang P, Qi C, Yu Y, Yuan J, Cui L, Tang G, Wang Q, Fan X. Covalent immobilization of catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking. Appl Biochem Biotechnol 2015;177:472.

    Article  CAS  Google Scholar 

  63. Sogawa H, Ifuku N, Numata K. 3,4-Dihydroxyphenylalanine (DOPA)-containing silk fibroin: its enzymatic synthesis and adhesion properties. ACS Biomater Sci Eng 2019;5:5644.

    Article  CAS  Google Scholar 

  64. Sogawa H, Korawit T, Masunaga H, Numata K. Silk/natural rubber (NR) and 3,4-dihydroxyphenylalanine (DOPA)-modified silk/NR composites: synthesis, secondary structure, and mechanical properties. Molecules 2020;25:235.

    Article  CAS  Google Scholar 

  65. Galeotti F, Andicsova A, Bertini F, Botta C. A versatile click-grafting approach to surface modification of silk fibroin films. J Mater Sci 2013;48:7004.

    Article  CAS  Google Scholar 

  66. Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials 2000;21:327.

    Article  CAS  Google Scholar 

  67. Zhang L, Tian L, Wu M. Preparation of isocyanate terminated polysiloxane and its application in crease resistant finishing of silk fabric. Fibers Polym 2020;21:300.

    Article  CAS  Google Scholar 

  68. Arai T, Ishikawa H, Freddi G, Winkler S, Tsukada M. Chemical modification of Bombyx mori silk using isocyanates. J Appl Polym Sci 2001;79:1756.

    Article  CAS  Google Scholar 

  69. Zhang X, Liang J, Chen Z, Donley C, Liu Y, Cheng G. Chemical modification of Bombyx mori silk fibers with vinyl groups for thiol-ene click chemistry. BMC Chem 2019;13:114.

    Article  CAS  Google Scholar 

  70. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 2018;9:1620.

    Article  CAS  Google Scholar 

  71. Bucciarelli A, Muthukumar T, Kim JS, Kim WK, Quaranta A, Maniglio D, Khang G, Motta A. Preparation and statistical characterization of tunable porous sponge scaffolds using UV cross-linking of methacrylate-modified silk fibroin. ACS Biomater Sci Eng 2019;5:6374.

    Article  CAS  Google Scholar 

  72. Gotoh Y, Tsukada M, Minoura N. Chemical modification of the arginyl residue in silk fibroin: 2. Reaction of 1,2-cyclohexanedione in aqueous alkaline medium. Int J Biol Macromol 1996;19:41.

    Article  CAS  Google Scholar 

  73. Gotoh Y, Tsukada M, Minoura N. Chemical modification of arginyl residues in silk fibroin: 1. Reaction of 1,2-cyclohexanedione in borate buffer. Int J Biol Macromol 1992;14:198.

    Article  CAS  Google Scholar 

  74. Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L. Poly(D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 2002;23:1153.

    Article  CAS  Google Scholar 

  75. Burke KA, Brenckle MA, Kaplan DL, Omenetto FG. Evaluation of the spectral response of functionalized silk inverse opals as colorimetric immunosensors. ACS Appl Mater Interfaces 2016;8:16218.

    Article  CAS  Google Scholar 

  76. Vepari CP, Kaplan DL. Covalently immobilized enzyme gradients within three-dimensional porous scaffolds. Biotechnol Bioeng 2006;93:1130.

    Article  CAS  Google Scholar 

  77. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan DL, Gronowicz G. RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 2006;448:234.

    Article  CAS  Google Scholar 

  78. Wang X, Kaplan DL. Functionalization of silk fibroin with NeutrAvidin and biotin. Macromol Biosci 2011;11:100.

    Article  CAS  Google Scholar 

  79. Lu Y, Hao Z, Wan C. Morphological and mechanical characterization of collagen-coated native silk fibroin fibers using chemical method. Mater Res Express 2019;6:085410.

    Article  CAS  Google Scholar 

  80. Tao X, Jiang F, Cheng K, Qi Z, Yadavalli VK, Lu S. Synthesis of pH and glucose responsive silk fibroin hydrogels. Int J Mol Sci 2021;22:7107.

    Article  CAS  Google Scholar 

  81. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139.

    Article  CAS  Google Scholar 

  82. Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C. Silk based biomaterials to heal critical sized femur defects. Bone 2006;39:922.

    Article  CAS  Google Scholar 

  83. Hardy JG, Pfaff A, Leal-Egana A, Muller AH, Scheibel TR. Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion. Macromol Biosci 2014;14:936.

    Article  CAS  Google Scholar 

  84. Jin L, Zhang X, Li Z, Chen G, Li J, Wang Z, Gao Y. Three-dimensional nanofibrous microenvironment designed for the regulation of mesenchymal stem cells. Appl Nanosci 2018;8:1915.

    Article  CAS  Google Scholar 

  85. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J Tissue Eng Regener Med 2017;11:1532.

    Article  CAS  Google Scholar 

  86. Manchineella S, Thrivikraman G, Basu B, Govindaraju T. Surface-functionalized silk fibroin films as a platform to guide neuron-like differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces 2016;8:22849.

    Article  CAS  Google Scholar 

  87. Vidal G, Blanchi T, Mieszawska AJ, Calabrese R, Rossi C, Vigneron P, Duval JL, Kaplan DL, Egles C. Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides. Acta Biomater 2013;9:4935.

    Article  CAS  Google Scholar 

  88. Zhang X, Bao H, Donley C, Liang J, Yang S, Xu S. Thiolation and characterization of regenerated Bombyx mori silk fibroin films with reduced glutathione. BMC Chem 2019;13:62.

    Article  CAS  Google Scholar 

  89. Huang X, Zhang M, Ming J, Ning X, Bai S. High-strength and high-toughness silk fibroin hydrogels: a strategy using dynamic host-guest interactions. ACS Appl Bio Mater 2020;3:7103.

    Article  CAS  Google Scholar 

  90. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol 2000;18:959.

    Article  CAS  Google Scholar 

  91. Hosseinkhani H, Hong PD, Yu DS. Self-assembled proteins and peptides for regenerative medicine. Chem Rev 2013;113:4837.

    Article  CAS  Google Scholar 

  92. Xia H, Li X, Gao W, Fu X, Fang RH, Zhang L, Zhang K. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater 2018;3:174.

    Article  CAS  Google Scholar 

  93. Tandon S, Kandasubramanian B, Ibrahim SM. Silk-based composite scaffolds for tissue engineering applications. Ind Eng Chem Res 2020;59:17593.

    Article  CAS  Google Scholar 

  94. Neubauer VJ, Dobl A, Scheibel T. Silk-based materials for hard tissue engineering. Materials 2021;14:674.

    Article  CAS  Google Scholar 

  95. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006;27:6064.

    Article  CAS  Google Scholar 

  96. Jin H. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004;25:1039.

    Article  CAS  Google Scholar 

  97. Wang S, Zhang Y, Wang H, Dong Z. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Int J Biol Macromol 2011;48:345.

    Article  CAS  Google Scholar 

  98. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27:3115.

    Article  CAS  Google Scholar 

  99. Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP, Meinel L. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials 2009;30:3058.

    Article  CAS  Google Scholar 

  100. Luo J, Zhang H, Zhu J, Cui X, Gao J, Wang X, Xiong J. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B 2018;163:369.

    Article  CAS  Google Scholar 

  101. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 2017;63:1.

    Article  CAS  Google Scholar 

  102. Rajput M, Bhandaru N, Barui A, Chaudhary A, Paul RR, Mukherjee R, Chatterjee J. Nano-patterned honey incorporated silk fibroin membranes for improving cellular compatibility. RSC Adv 2014;4:44674.

    Article  CAS  Google Scholar 

  103. Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci 2021;21:e2100153.

    Article  CAS  Google Scholar 

  104. Thu-Hien L, Thanh-Truc N, Toi VV, Khon HC, Bao BC, Niem VVT, Ngoc Tuan Anh M, Hai ND, Chuong PD, Hiep NT. Evaluation of the morphology and biocompatibility of natural silk fibers/agar blend scaffolds for tissue regeneration. Int J Polym Sci 2018. https://doi.org/10.1155/2018/5049728 .

    Article  Google Scholar 

  105. Yan S, Feng L, Zhu Q, Yang W, Lan Y, Li D, Liu Y, Xue W, Guo R, Wu G. Controlled release of BMP-2 from a heparin-conjugated strontium-substituted nanohydroxyapatite/silk fibroin scaffold for bone regeneration. ACS Biomater Sci Eng 2018;4:3291.

    Article  CAS  Google Scholar 

  106. Luo Z, Li J, Qu J, Sheng W, Yang J, Li M. Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165-Ang-1 coexpression plasmid for dermal tissue regeneration. J Mater Chem B 2019;7:80.

    Article  CAS  Google Scholar 

  107. Patil S, Singh N. Spatially controlled functional group grafting of silk films to induce osteogenic and chondrogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C 2018;91:796.

    Article  CAS  Google Scholar 

  108. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan DL. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res Part A 2004;71:528.

    Article  CAS  Google Scholar 

  109. DeBari MK, Keyser MN, Bai MA, Abbott RD. 3D printing with silk: considerations and applications. Connect Tissue Res 2020;61:163.

    Article  CAS  Google Scholar 

  110. Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 2016;21:685.

    Article  CAS  Google Scholar 

  111. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 2008;18:1883.

    Article  CAS  Google Scholar 

  112. Costa JB, Silva-Correia J, Oliveira JM, Reis RL. Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv Healthc Mater 2017;6:1701021.

    Article  CAS  Google Scholar 

  113. Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, Ajiteru O, Sultan MT, Lee OJ, Kim SH, Park CH. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020;232:119679.

    Article  CAS  Google Scholar 

  114. Kim SH, Hong H, Ajiteru O, Sultan MT, Lee YJ, Lee JS, Lee OJ, Lee H, Park HS, Choi KY, Lee JS, Ju HW, Hong IS, Park CH. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc 2021;16:5484.

    Article  CAS  Google Scholar 

  115. Chai N, Zhang J, Zhang Q, Du H, He X, Yang J, Zhou X, He J, He C. Construction of 3D printed constructs based on microfluidic microgel for bone regeneration. Compos Part B 2021;223:109100.

    Article  CAS  Google Scholar 

  116. Deng C, Yang J, He H, Ma Z, Wang W, Zhang Y, Li T, He C, Wang J. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci 2021;9:4891.

    Article  CAS  Google Scholar 

  117. Suyamud C, Phetdee C, Jaimalai T, Prangkio P. Silk fibroin-coated liposomes as biomimetic nanocarrier for long-term release delivery system in cancer therapy. Molecules 2021;26:4936.

    Article  CAS  Google Scholar 

  118. Tomeh MA, Hadianamrei R, Zhao X. Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics 2019;11:494.

    Article  CAS  Google Scholar 

  119. Cheng X, Deng D, Chen L, Jansen JA, Leeuwenburgh SGC, Yang F. Electrodeposited assembly of additive-free silk fibroin coating from pre-assembled nanospheres for drug delivery. ACS Appl Mater Interfaces 2020;12:12018.

    Article  CAS  Google Scholar 

  120. Li AB, Kluge JA, Guziewicz NA, Omenetto FG, Kaplan DL. Silk-based stabilization of biomacromolecules. J Controll Release 2015;219:416.

    Article  CAS  Google Scholar 

  121. Lu SZ, Wang XQ, Uppal N, Kaplan DL, Li MZ. Stabilization of horseradish peroxidase in silk materials. Front Mater Sci 2009;3:367.

    Article  Google Scholar 

  122. Li AB, Kluge JA, Zhi M, Cicerone MT, Omenetto FG, Kaplan DL. Enhanced stabilization in dried silk fibroin matrices. Biomacromol 2017;18:2900.

    Article  CAS  Google Scholar 

  123. Zhang J, Pritchard E, Hu X, Valentin T, Panilaitis B, Omenetto FG, Kaplan DL. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc Natl Acad Sci 2012;109:11981.

    Article  CAS  Google Scholar 

  124. Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 2010;62:1497.

    Article  CAS  Google Scholar 

  125. Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. J Controll Release 2014;190:381.

    Article  CAS  Google Scholar 

  126. Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci 2015;16:4880.

    Article  CAS  Google Scholar 

  127. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Xue RY. Silk sericin-insulin bioconjugates: synthesis, characterization and biological activity. J Controlled Release 2006;115:307.

    Article  CAS  Google Scholar 

  128. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Zha XM, Shirai K, Kiguchi K. Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo. J Biomed Mater Res Part B 2006;79:275.

    Article  CAS  Google Scholar 

  129. Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 2008;11:1937.

    Article  CAS  Google Scholar 

  130. Zhang YQ, Zhou WL, Shen WD, Chen YH, Zha XM, Shirai K, Kiguchi K. Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. J Biotechnol 2005;120:315.

    Article  CAS  Google Scholar 

  131. Zhu L, Hu RP, Wang HY, Wang YJ, Zhang YQ. Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin. J Agric Food Chem 2011;59:10298.

    Article  CAS  Google Scholar 

  132. Cao TT, Zhou ZZ, Zhang YQ. Processing of beta-glucosidase-silk fibroin nanoparticle bioconjugates and their characteristics. Appl Biochem Biotechnol 2014;173:544.

    Article  CAS  Google Scholar 

  133. Coburn JM, Na E, Kaplan DL. Modulation of vincristine and doxorubicin binding and release from silk films. J Controll Release 2015;220:229.

    Article  CAS  Google Scholar 

  134. Ma Y, Canup BSB, Tong X, Dai F, Xiao B. Multi-responsive silk fibroin-based nanoparticles for drug delivery. Front Chem 2020;8:585077.

    Article  CAS  Google Scholar 

  135. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 2015;9:6996.

    Article  CAS  Google Scholar 

  136. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016;99:28.

    Article  CAS  Google Scholar 

  137. Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromol 2015;16:3712.

    Article  CAS  Google Scholar 

  138. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26:1261.

    Article  CAS  Google Scholar 

  139. Raja WK, Maccorkle S, Diwan IM, Abdurrob A, Lu J, Omenetto FG, Kaplan DL. Transdermal delivery devices: fabrication, mechanics and drug release from silk. Small 2013;9:3704.

    Article  CAS  Google Scholar 

  140. Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater 2012;22:330.

    Article  CAS  Google Scholar 

  141. Zhu M, Liu Y, Jiang F, Cao J, Kundu SC, Lu S. Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng 2020;6:3422.

    Article  CAS  Google Scholar 

  142. Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol 2018;106:48.

    Article  CAS  Google Scholar 

  143. Stinson JA, Boopathy AV, Cieslewicz BM, Zhang Y, Hartman NW, Miller DP, Dirckx M, Hurst BL, Tarbet EB, Kluge JA, Kosuda KM. Enhancing influenza vaccine immunogenicity and efficacy through infection mimicry using silk microneedles. Vaccine 2021;39:5410.

    Article  CAS  Google Scholar 

  144. DeMuth PC, Min Y, Irvine DJ, Hammond PT. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater 2014;3:47.

    Article  CAS  Google Scholar 

  145. Stinson JA, Raja WK, Lee S, Kim HB, Diwan I, Tutunjian S, Panilaitis B, Omenetto FG, Tzipori S, Kaplan DL. Silk fibroin microneedles for transdermal vaccine delivery. ACS Biomater Sci Eng 2017;3:360.

    Article  CAS  Google Scholar 

  146. Yavuz B, Chambre L, Harrington K, Kluge J, Valenti L, Kaplan DL. Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater 2020;3:5375.

    Article  CAS  Google Scholar 

  147. Heichel DL, Burke KA. Enhancing the carboxylation efficiency of silk fibroin through the disruption of noncovalent interactions. Bioconjugate Chem 2020;31:1307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 52103129) and Foundation of Westlake University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziyang Sun or Chengchen Guo.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, Z. & Guo, C. Chemical Modification of Silk Proteins: Current Status and Future Prospects. Adv. Fiber Mater. 4, 705–719 (2022). https://doi.org/10.1007/s42765-022-00144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00144-9

Keywords

Navigation