Skip to main content
Log in

Recent Progress of Applying Mesoscopic Functionalization Engineering Principles to Spin Advanced Regenerated Silk Fibroin Fibers

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The Bombyx mori silk fibers are regarded as one of the most fascinating flexible materials in the twenty-first century and have shown great potential in areas including fiber sensors, fiber actuators, optical fibers, energy harvester, etc. The regenerated silk fibroin (SF) molecules taken from B. mori cocoon fibers have been verified to be capable of mesoscopically reconstructing during the SF molecules refolding process. The key concern of this review is to summarize recent engineering applying principles of meso reconstruction, meso hybridization and meso doping to synthesize artificial regenerated SF fibers with enhanced or even novel functions, especially based on rerouting the refolding process of SF molecules via controlling nucleation pathway. In general, the knowledge of the meso reconstruction of silk fibre shed light on the design and fabrication of other ultra-performance SF materials from the crystallization and meso structural point of view.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016, Wiley–VCH

Figure 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wegst UGK, et al. Bioinspired structural materials. Nat Mater 2015;14(1):23–36.

    Article  CAS  Google Scholar 

  2. Rockwood DN, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011;6(10):1612–31.

    Article  CAS  Google Scholar 

  3. Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002;418(6899):741–741.

    Article  CAS  Google Scholar 

  4. Shi CY, et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials. Adv Mater. 2021;33(50):2005910.

    Article  CAS  Google Scholar 

  5. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329(5991):528–31.

    Article  CAS  Google Scholar 

  6. Brito-Pereira R, et al. Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Compos B Eng 2018;141:70–5.

    Article  CAS  Google Scholar 

  7. Wu R, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. Small 2019;15(31):1901558.

    Article  CAS  Google Scholar 

  8. Xu Z, et al. Flexible, controllable and angle-independent photoelectrochromic display enabled by smart sunlight management. Nano Energy 2019;63:103830.

    Article  CAS  Google Scholar 

  9. Ma L, et al. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 2020;16(26):2000203.

    Article  CAS  Google Scholar 

  10. Xu Z, et al. Stretchable, stable, and degradable silk fibroin enabled by mesoscopic doping for finger motion triggered color/transmittance adjustment. ACS Nano 2021;15(7):12429–37.

    Article  CAS  Google Scholar 

  11. Huang J, et al. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv Funct Mater 2020;30(13):1910547.

    Article  CAS  Google Scholar 

  12. Zhang Y, et al. Meso‐reconstruction of silk fibroin based on molecular and nano‐templates for electronic skin in medical applications. Adv Funct Mater. 2021;31(21):2100150.

    Article  CAS  Google Scholar 

  13. Tian Y, et al. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater 2014;26(43):7393–8.

    Article  CAS  Google Scholar 

  14. Zourob M, Gough JE, Ulijn RV. A micropatterned hydrogel platform for chemical synthesis and biological analysis. Adv Mater 2006;18(5):655–9.

    Article  CAS  Google Scholar 

  15. Wang M, et al. Patterning polymers by micro-fluid-contact printing. Adv Mater 2001;13(17):1312–7.

    Article  CAS  Google Scholar 

  16. Qiu W, Liu X-Y. Cocoon silk: from mesoscopic materials design to engineering principles and applications. In: Frontiers and progress of current soft matter research. 2021. p. 241–98.

  17. Qiu W, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles. Small 2019;15(51):1903948.

    Article  CAS  Google Scholar 

  18. Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410(6828):541–8.

    Article  CAS  Google Scholar 

  19. Girotti A, et al. Recombinant technology in the development of materials and systems for soft-tissue repair. Adv Healthc Mater 2015;4(16):2423–55.

    Article  CAS  Google Scholar 

  20. Hu F, Lin N, Liu X. Interplay between light and functionalized silk fibroin and applications. Iscience 2020;23(4):101035.

    Article  CAS  Google Scholar 

  21. Chen G, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater 2018;30(21):1800129.

    Article  CAS  Google Scholar 

  22. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008;3(5):270–4.

    Article  CAS  Google Scholar 

  23. Lin N, Liu XY. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem Soc Rev 2015;44(21):7881–915.

    Article  CAS  Google Scholar 

  24. Liu R, et al. “Nano-Fishnet” structure making silk fibers tougher. Adv Funct Mater 2016;26(30):5534–41.

    Article  CAS  Google Scholar 

  25. Xu G, et al. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 2014;10(13):2116–23.

    Article  CAS  Google Scholar 

  26. Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun 2009;43:6515–29.

    Article  CAS  Google Scholar 

  27. Wang H, et al. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures. Chem Commun 2013;49(14):1431–3.

    Article  CAS  Google Scholar 

  28. Tu H, et al. Programing performance of wool keratin and silk fibroin composite materials by mesoscopic molecular network reconstruction. Adv Funct Mater 2016;26(48):9032–43.

    Article  CAS  Google Scholar 

  29. Warwicker J. The crystal structure of silk fibroin. Acta Crystallogr A 1954;7(8–9):565–73.

    Article  CAS  Google Scholar 

  30. Yarger JL, Cherry BR, van der Vaart A. Uncovering the structure–function relationship in spider silk. Nat Rev Mater 2018;3(3):18008–18019.

    Article  CAS  Google Scholar 

  31. Xing Y, et al. Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small 2017;13(40):1702390.

    Article  CAS  Google Scholar 

  32. Du N, et al. Structural origin of the strain-hardening of spider silk. Adv Func Mater 2011;21(4):772–8.

    Article  CAS  Google Scholar 

  33. Guo CC, et al. Comparative study of strain-dependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small 2017;13(47):1702266.

    Article  CAS  Google Scholar 

  34. Keten S, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 2010;9(4):359–67.

    Article  CAS  Google Scholar 

  35. Wu X, et al. Unraveled mechanism in silk engineering: fast reeling induced silk toughening. Appl Phys Lett 2009;95(9):093703.

    Article  CAS  Google Scholar 

  36. Zhang TH, Liu XY. Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. Chem Soc Rev 2014;43(7):2324–47.

    Article  CAS  Google Scholar 

  37. Liu XY. Effect of foreign particles: a comprehensive understanding of 3D heterogeneous nucleation. J Cryst Growth 2002;237:1806–12.

    Article  Google Scholar 

  38. Chen Z, et al. Programing performance of silk fibroin materials by controlled nucleation. Adv Func Mater 2016;26(48):8978–90.

    Article  CAS  Google Scholar 

  39. Xiong R, et al. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 2017;11(12):12008–19.

    Article  CAS  Google Scholar 

  40. Ling S, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett 2014;3(2):146–52.

    Article  CAS  Google Scholar 

  41. Han J, et al. Patterning and photoluminescence of CdS nanocrystallites on silk fibroin fiber. J Nanopart Res 2010;12(1):347–56.

    Article  CAS  Google Scholar 

  42. Liu Q, et al. A novel facile and green synthesis protocol to prepare high strength regenerated silk fibroin/SiO2 composite fiber. Fibers Polym 2019;20(10):2222–6.

    Article  CAS  Google Scholar 

  43. Lin N, et al. Functionalization of silk fibroin materials at mesoscale. Adv Func Mater 2016;26(48):8885–902.

    Article  CAS  Google Scholar 

  44. Liu Y, Shao ZZ, Vollrath F. Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 2005;4(12):901–5.

    Article  CAS  Google Scholar 

  45. Liu Y, et al. Proline and processing of spider silks. Biomacromol 2008;9(1):116–21.

    Article  CAS  Google Scholar 

  46. Cai LY, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. Acs Sustain Chem Eng 2015;3(10):2551–7.

    Article  CAS  Google Scholar 

  47. Riekel C, Muller M, Vollrath F. In situ X-ray diffraction during forced silking of spider silk. Macromolecules 1999;32(13):4464–6.

    Article  CAS  Google Scholar 

  48. Wang Q, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 2016;16(10):6695–700.

    Article  CAS  Google Scholar 

  49. Teule F, et al. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA 2012;109(3):923–8.

    Article  CAS  Google Scholar 

  50. Xu J, et al. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci USA 2018;115(35):8757–62.

    Article  CAS  Google Scholar 

  51. Cho HJ, et al. Effect of molecular weight and storage time on the wet-and electro-spinning of regenerated silk fibroin. Polym Degrad Stab 2012;97(6):1060–6.

    Article  CAS  Google Scholar 

  52. Ha SW, Tonelli AE, Hudson SM. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromol 2005;6(3):1722–31.

    Article  CAS  Google Scholar 

  53. Li GY, et al. The natural silk spinning process—a nucleation-dependent aggregation mechanism? Eur J Biochem 2001;268(24):6600–6.

    Article  CAS  Google Scholar 

  54. Ling S, et al. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 2017;8:1–12.

    Article  CAS  Google Scholar 

  55. Sun MJ, et al. The structure-property relationships of artificial silk fabricated by dry-spinning process. J Mater Chem 2012;22(35):18372–9.

    Article  CAS  Google Scholar 

  56. Um IC, et al. Wet spinning of silk polymer—I. Effect of coagulation conditions on the morphological feature of filament. International J Biol Macromol 2004;34(1–2):89–105.

    Article  CAS  Google Scholar 

  57. Wei W, et al. Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Mater Sci Eng C Mater Biol Appl 2011;31(7):1602–8.

    Article  CAS  Google Scholar 

  58. Yan JP, et al. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromol 2010;11(1):1–5.

    Article  CAS  Google Scholar 

  59. Zhou H, Shao Z-Z, Chen X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chin J Polym Sci 2014;32(1):29–34.

    Article  CAS  Google Scholar 

  60. Xu Y, et al. Solubility and rheological behavior of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 2005;35(3–4):155–61.

    Article  CAS  Google Scholar 

  61. Heidebrecht A, et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 2015;27(13):2189–94.

    Article  CAS  Google Scholar 

  62. Lammel AS, et al. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010;31(16):4583–91.

    Article  CAS  Google Scholar 

  63. Cheng J, et al. Biomimetic spinning of silk fibers and in situ cell encapsulation. Lab Chip 2016;16(14):2654–61.

    Article  CAS  Google Scholar 

  64. Peng QF, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 2016;6:1–12.

    Article  CAS  Google Scholar 

  65. Zhou GQ, et al. Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv Mater 2009;21(3):366–70.

    Article  CAS  Google Scholar 

  66. Lv Z, et al. Phototunable biomemory based on light-mediated charge trap. Adv Sci 2018;5(9):1800714.

    Article  CAS  Google Scholar 

  67. Kim H, et al. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C Mater Biol Appl 2014;40:324–35.

    Article  CAS  Google Scholar 

  68. Zhou L, et al. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 2013;54(18):5035–42.

    Article  CAS  Google Scholar 

  69. Xia Y, Lu Y. Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers. Compos Sci Technol 2008;68(6):1471–9.

    Article  CAS  Google Scholar 

  70. Fathi A, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng 2020;14(1):1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 12074322), Science and Technology Project of Xiamen City (3502Z20183012), Science and Technology Planning Project of Guangdong Province (2018B030331001), Shenzhen Science and technology plan project (JCYJ20180504170208402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Liu, X.Y. Recent Progress of Applying Mesoscopic Functionalization Engineering Principles to Spin Advanced Regenerated Silk Fibroin Fibers. Adv. Fiber Mater. 4, 390–403 (2022). https://doi.org/10.1007/s42765-021-00127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00127-2

Keywords

Navigation