Skip to main content
Log in

Fabrication of Sulfated Silk Fibroin-Based Blend Nanofibrous Membranes for Lysozyme Adsorption

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In this work, the silk fibroin/cellulose blend nanofibrous membranes modified with sodium-3-sulfobenzoate (S-SCBNM) were fabricated by electrospinning technique for lysozyme adsorption. The morphology and structure of membranes was observed. The effect of sulfate contents, pH values and concentration of lysozyme on adsorption performance were studied, respectively. The reuse capacity was evaluated. The results showed that the resultant S-SCBNM exhibited integrated properties of ultrathin fiber diameter (148 nm), fast adsorption equilibrium, excellent adsorption performance (636 mg g−1) and good reversibility. We envision that this new class of green and natural blend membranes is particularly promising for the development of proteins separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Si Y, Zhao C. Spontaneous and efficient adsorption of lysozyme from aqueous solutions by naturally polyanion gel beads. Mater Sci Eng C. 2017;76:130–8.

    Article  CAS  Google Scholar 

  2. Li J, Wei X, He J. Tailored natural polysaccharides beads as green sorbents for efficient lysozyme adsorption. J Polym Environ. 2018;26:2803–12.

    Article  CAS  Google Scholar 

  3. Zhang Y, Xing L, Chen X. Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl Mater Inter. 2015;7:5116–23.

    Article  CAS  Google Scholar 

  4. Kubo T, Arimura S, Tominaga Y. Molecularly imprinted polymers for selective adsorption of lysozyme and cytochrome c using a PEG-based hydrogel: selective recognition for different conformations due to pH conditions. Macromolecules. 2015;48:4081–7.

    Article  CAS  Google Scholar 

  5. Chen K, Chou S, Chang Y. Rapid purification of lysozyme by mixed-mode adsorption chromatography in stirred fluidized bed. Food Chem. 2019;272:619–27.

    Article  CAS  Google Scholar 

  6. Alveroglu E, İlker N, Shah M. Effects of gel morphology on the lysozyme adsorption and desorption kinetics of temperature sensitive magnetic gel composites. Colloid Surface B. 2019;181:981–8.

    Article  CAS  Google Scholar 

  7. Ma L, Pang D, Deng C. Competitive adsorption of bovine serum albumin and lysozyme on a beta-tricalcium phosphate nanocoating. Colloid Surf A Physicochem Eng Asp. 2019;582:123860.

    Article  CAS  Google Scholar 

  8. Amaly N, Ma Y, El-Moghazy A. Copper complex formed with pyridine rings grafted on cellulose nanofibrous membranes for highly efficient lysozyme adsorption. Sep Purif Technol. 2020;5:117086.

    Article  Google Scholar 

  9. Brassesco M, Valetti G, Picó N. Molecular mechanism of lysozyme adsorption onto chemically modified alginate guar gum matrix. Int J Biol Macromol. 2017;96:111–7.

    Article  CAS  Google Scholar 

  10. Boeris V, Vennapusa R, Rodríguez M. Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. J Chromatogr B. 2012;900:32–7.

    Article  CAS  Google Scholar 

  11. Enayatpour B, Rajabi M, Moradi O. Adsorption kinetics of lysozyme on multi-walled carbon nanotubes and amino functionalized multi-walled carbon nanotubes from aqueous solution. J Mol Liq. 2018;254:93–7.

    Article  CAS  Google Scholar 

  12. Su C, Lai C, Yeh L. The characteristics of a preservative-free contact lens care solution on lysozyme adsorption and interfacial friction behavior. Colloid Surface B. 2018;171:538–43.

    Article  CAS  Google Scholar 

  13. Yi S, Dai F, Ma Y, et al. Ultrafine silk-derived nanofibrous membranes exhibiting effective lysozyme adsorption. ACS Sustain Chem Eng. 2017;5:8777–84.

    Article  CAS  Google Scholar 

  14. Zhou Z, Shi Z, Cai X. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv Mater. 2017;29:1605471.

    Article  Google Scholar 

  15. Tamada Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials. 2004;25:377–83.

    Article  CAS  Google Scholar 

  16. Ling S, Li C, Jin K. Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv Mater. 2016;28:7783–90.

    Article  CAS  Google Scholar 

  17. Papke M, Schulz S, Tichy H. Identification of a new sex pheromone from the silk dragline of the tropical wandering spider Cupiennius salei. Angew Chem Int Ed. 2000;39:4339–41.

    Article  CAS  Google Scholar 

  18. Zhou W, He J, Cui S. Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption. Fiber Polym. 2011;12:431–7.

    Article  CAS  Google Scholar 

  19. Zhou W, He J, Du S. Electrospun silk fibroin/cellulose acetate blend nanofibres: structure and properties. Iran Polym J. 2011;20:389–97.

    CAS  Google Scholar 

  20. Feng Y, Li X, Li M. Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain Chem Eng. 2017;5:6227–36.

    Article  CAS  Google Scholar 

  21. Feng Y, Li X, Zhang Q. Fabrication of porous silk fibroin/cellulose nanofibril sponges with hierarchical structure using a lithium bromide solvent system. Cellulose. 2019;26:1013–23.

    Article  CAS  Google Scholar 

  22. Park K, Jung S, Lee S. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol. 2006;38:165–73.

    Article  CAS  Google Scholar 

  23. Chang S, Eun H. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membrane Sci. 2007;302:20–6.

    Article  Google Scholar 

  24. Cheung H, Lau K, Tao X. A potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos Part B Eng. 2008;39:1026–33.

    Article  Google Scholar 

  25. Jin H, Fridrikh S, Rutledge G. Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromol. 2002;3:1233–9.

    Article  CAS  Google Scholar 

  26. Yi S, Dai F, Wu Y. Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. Int J Biol Macromol. 2018;111:738–45.

    Article  CAS  Google Scholar 

  27. Fu Q, Wang X, Si Y, et al. Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Inter. 2016;8:11819–29.

    Article  CAS  Google Scholar 

  28. Yi S, Dong Y, Li B. Adsorption and fixation behaviour of CI Reactive Red 195 on cotton woven fabric in a nonionic surfactant Triton X-100 reverse micelle. Color Technol. 2012;128:306–14.

    Article  CAS  Google Scholar 

  29. Sun S, Zhang Y, Zou Y. Adsorption and dyeing properties of acid dyes on fine denier silk fibers. Text Res J. 2020;90:433–41.

    Article  CAS  Google Scholar 

  30. Tan I, Hameed B, Ahmad A. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J. 2007;127:111–9.

    Article  CAS  Google Scholar 

  31. Shen W, Chen S, Shi S. Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym. 2009;75:110–4.

    Article  CAS  Google Scholar 

  32. Yi S, Sun S, Zhang Y, et al. Scalable fabrication of bimetal modified polyacrylonitrile (PAN) nanofibrous membranes for photocatalytic degradation of dyes. J Colloid Interf Sci. 2020;559:134–42.

    Article  CAS  Google Scholar 

  33. Yi S, Zou Y, Sun S, et al. Rechargeable photoactive silk-derived nanofibrous membranes for degradation of reactive red 195. ACS Sustain Chem Eng. 2019;7:986–93.

    Article  CAS  Google Scholar 

  34. Alhumaimess M. Adsorption kinetic and thermodynamic studies of safranin and methylene blue on a novel adsorbent based on phosphorylated sawdust. Desalin Water Treat. 2019;151:199–211.

    Article  CAS  Google Scholar 

  35. Fiaz R, Hafeez M, Mahmood R. Ficcus palmata leaves as a low-cost biosorbent for methylene blue: Thermodynamic and kinetic studies. Water Environ Res. 2019;91:689–99.

    Article  CAS  Google Scholar 

  36. Gemici B, Ozel H. Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine (Pinus nigra Arnold.): kinetic and equilibrium studies. Sep Sci Technol. 2020;55:406–14.

    Article  CAS  Google Scholar 

  37. Kumar G, Chandra M. Removal of arsenite from aqueous solution using activated carbon derived from Eichhornia crassipes root biomass: Equilibrium, kinetic, thermodynamic and column studies. Res J Chem Environ. 2019;23:94–105.

    CAS  Google Scholar 

  38. Ma J, Wang X, Fu Q, et al. Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption. ACS Appl Mater Interfaces. 2015;7:15658–66.

    Article  CAS  Google Scholar 

  39. Wang X, Fu Q, Wang X. In situ cross-linked and highly carboxylated poly (vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J Mater Chem B. 2015;3:7281–90.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the National Natural Science Foundation of China (No. 21506173) and Undergraduates' Innovation and Entrepreneurship Training Program in Southwest University (No. P202110635060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Xiao or Shixiong Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wu, J., Li, Y. et al. Fabrication of Sulfated Silk Fibroin-Based Blend Nanofibrous Membranes for Lysozyme Adsorption. Adv. Fiber Mater. 4, 89–97 (2022). https://doi.org/10.1007/s42765-021-00104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00104-9

Keywords

Navigation